Find the integral of the function.
Answers
EXPLANATION.
⇒ ∫dx/sin(x - a)cos(x - b)
As we know that,
Multiply and divide numerator and denominator by = cos(a - b).
⇒ 1/cos(a - b) ∫cos(a - b).dx/sin(x - a)cos(x - b).
We can write as,
⇒ (a - b) = (x - b) - (x - a).
⇒ (a - b) = x - b - x + a.
⇒ (a - b) = - b + a.
⇒ (a - b) = a - b.
⇒ 1/cos(a - b) ∫ cos[(x - b) - (x - a)].dx/sin(x - a)cos(x - b).
As we know that,
⇒ cos(a - b) = cos(a).cos(b) + sin(a).sin(b).
⇒ 1/cos(a - b) ∫ cos(x - a)cos(x - b) + sin(x - a)sin(x - b).dx/sin(x - a)cos(x - b).
⇒ 1/cos(a - b) ∫cos(x - a)cos(x - b).dx/sin(x - a)cos(x - b) + ∫sin(x - a)sin(x - b).dx/sin(x - a)cos(x - b).
⇒ 1/cos(a - b) ∫cos(x - a).dx/sin(x - a) + ∫sin(x - b).dx/cos(x - b).
⇒ 1/cos(a - b) ∫[cot(x - a) + tan(x - b)].dx
⇒ 1/cos(a - b) [㏒| sin(x - a)| - ㏒ | cos(x - b) |] + c.
⇒ 1/cos(a - b) [ ㏒ | sin(x - a)/sin(x - b) | + c.
MORE INFORMATION.
Integration of trigonometric functions.
(1) = ∫dx/a + bsin²x.
(2) = ∫dx/a + bcos²x.
(3) = ∫dx/acos²x + b sin(x).cos(x) + csin²x
(4) = dx/(a sin(x) + cos(x))².
Divide numerator and denominator by cos²x in all such type of integrals and then put tan(x) = t.
On multiply and divide by cos(a - b), we get