Math, asked by Jerika, 1 year ago

find the integral : sec^2x/cosec^2x

Attachments:

Answers

Answered by prabhjot99
50
∫(sec2x​/cosec2x)dx

∫(1/cos​​2x)/(1/sin2x)dx

∫(1/cos​2sin) . (sin2x/1)dx

∫tan2x dx

∫(sec2x-1) dx

tanx - x + c
Answered by mysticd
31

Answer:

\int \frac{sec^{2}x}{cosec^{2}x}\:dx</p><p>= tanx - x + c

Step-by-step explanation:

i) \frac{sec^{2}x}{cosec^{2}x}

= \frac{\frac{1}{cos^{2}x}}{\frac{1}{sin^{2}x}}

=\frac{sin^{2}x}{cos^{2}x}

= tan^{2}x ---(1)

Now ,

\int \frac{sec^{2}x}{cosec^{2}x}\:dx

=\int tan^{2}x \: dx

\* From (1) *\

= \int (sec^{2}x-1)\: dx

/* Apply the Trigonometric identity:

tan²x = sec²x - 1 */

= \int sec^{2}x \: dx- \int 1\:dx

\* Apply sum rule *\

=  tanx - x + c

\* Since ,

i ) \int sec^{2}x\: dx = tanx

ii )\int 1\:dx = x *\

Therefore,

\int \frac{sec^{2}x}{cosec^{2}x}\:dx</p><p>=  tanx - x + c

•••••

Similar questions