Math, asked by BoldBeauty, 9 months ago

Find the Integral
 \sf \int\dfrac{x^{2} - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}}dx
No spam
Be brainly
Quality answer needed !​

Answers

Answered by Anonymous
55

Question :

Integrate :

\sf\int\dfrac{x^2-1}{x^3\sqrt{2x^4-2x^2+1}}dx

Solution :

We have to integrate

\sf\:I=\int\dfrac{x^2-1}{x^3\sqrt{2x^4-2x^2+1}}dx

\sf\:I=\int\dfrac{x^2-1}{x^3\sqrt{x^4(2-\frac{2}{x^2}+\frac{1}{x^4}})}dx

\sf=\int\dfrac{x^2-1}{x^3\times\:x^2\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}}

\sf=\int\dfrac{x^2-1}{x^5\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}}dx

\sf=\int(\dfrac{x^2-1}{x^5})\times\dfrac{1}{\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}}dx

\sf=\int(\dfrac{x^2}{x^5}-\dfrac{1}{x^5})\times\dfrac{1}{\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}}dx...(1)

Let \sf\:t=2-\dfrac{2}{x^2}+\dfrac{1}{x^4}

Now Differentiate with respect to x

\sf\dfrac{dt}{dx}=\dfrac{d(2)}{dx}-\dfrac{2x{}^{-2}}{dx}+\dfrac{x{}^{-4}}{dx}

\sf\dfrac{dt}{dx}=0+\dfrac{4}{x^3}-\dfrac{4}{x^5}

\sf\dfrac{dt}{dx}=4(\dfrac{1}{x^3}-\dfrac{1}{x^5})

\sf\dfrac{dt}{4}=(\dfrac{1}{x^3}-\dfrac{1}{x^5})dx

Then,

\sf\int(\dfrac{x^2}{x^5}-\dfrac{1}{x^5})\times\dfrac{1}{\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}}dx

\sf=\int\dfrac{1}{\sqrt{t}}\times\dfrac{dt}{4}

\sf=\dfrac{1}{4}\int\:t{}^{\frac{-1}{2}}dt

We know that \sf\int\:x^n=\dfrac{x{}^{n+1}}{n+1}

\sf=\dfrac{1}{4}\times\dfrac{\sqrt{t}}{\frac{1}{2}}+c

\sf=\dfrac{2}{4}\times\sqrt{t}+c

\sf=\dfrac{\sqrt{t}}{2}+c

\sf=\dfrac{\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}}{2}+c

\sf=\dfrac{\sqrt{\frac{2x^4-2x^2+1}{x^4}}}{2}+c

\sf=\dfrac{\sqrt{2x^4-2x^2+1}}{2x^2}+c


Vamprixussa: Awesomee !!!
Similar questions