Math, asked by satyarth111a, 1 month ago

find the integral -
 {x}^{ - 3} (x + 1)dx
dont spam.otherwise will be reportrd​

Answers

Answered by ajr111
27

Answer:

\mathrm{-\bigg(\dfrac{1}{x} + \dfrac{1}{2x^2}\bigg) + c}

Step-by-step explanation:

Given :

\mathrm{{x}^{ - 3} (x + 1)dx}

To find :

integral

Solution :

\longmapsto \displaystyle \int \mathrm{{x}^{ - 3} (x + 1)dx}

We know that,

\boxed{\mathrm{a^{-m} = \dfrac{1}{a^m}}}

\longmapsto \displaystyle \int \mathrm{\bigg(\dfrac{x}{x^{3}} + \dfrac{1}{x^3}\bigg)dx}

\longmapsto \displaystyle \int \mathrm{\bigg(\dfrac{1}{x^{2}} + \dfrac{1}{x^3}\bigg)dx}

We know that,

\boxed{\mathrm{\int x^n = \dfrac{x^{n+1}}{n+1} + c \ ;\ n \neq 1 }}

So,

\implies \mathrm{\dfrac{-1}{x} + \dfrac{-1}{2x^2} + c}

\implies \mathrm{-\bigg(\dfrac{1}{x} + \dfrac{1}{2x^2}\bigg) + c}

\therefore \underline{\boxed{ \displaystyle \int \mathbf{{x}^{ - 3} (x + 1)dx} = \mathbf{-\bigg(\dfrac{1}{x} + \dfrac{1}{2x^2}\bigg) + c} }}

Extra information :

Some basic integrals :

 \begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx+c \\\\ \sf x^n \ (n \neq -1)& \sf \dfrac{x^{n+1}}{n+1} + c \\\\ \sf \dfrac{1}{x} & \sf logx+ c\\\\ \sf {e}^{x} & \sf {e}^{x}+c\\\\ \sf sinx & \sf - \: cosx+ c \\\\ \sf cosx & \sf \: sinx + c\\\\ \sf {sec}^{2} x & \sf tanx + c\\\\ \sf {cosec}^{2}x & \sf - cotx+ c \\\\ \sf secx \: tanx & \sf secx + c\\\\ \sf cosecx \: cotx& \sf -\: cosecx + c\end{array}} \\ \end{gathered}

Hope it helps!!

Similar questions