Math, asked by PragyaTbia, 1 year ago

Find the integrals of the function: tan^4 x

Answers

Answered by abhi178
1

tan⁴x = tan²x × tan²x

= (sec²x-1) × tan²x [ as we know, sec²x - tan²x = 1 ]

= sec²x × tan²x - tan²x

= sec²x tan²x- (sec²x-1)

= sec²x tan²x - sec²x+1

now, \int{tan^4x}\,dx=\int{sec^2x.tan^2x-sec^2x+1}\,dx

= \int{sec^2x.tan^2x}\,dx-\int{sec^2x}\,dx+\int{1}\,dx

now, Let I_1=\int{sec^2x.tan^2x}\,dx

Let tanx = t

differentiating both sides,

sec²x dx = dt

so, \int{sec^2x.tan^2x}=\int{t^2}\,dt

= \left[\frac{t^3}{3}\right]

hence, I_1=\left[\frac{tan^3x}{3}\right]

now, let, I_2=\int{sec^2x}\,dx=tanx

so, \int{tan^4}\,dx=I_1-I_2+x+C

= \left[\frac{tan^3}{3}\right]-tanx+x+C

Similar questions