Math, asked by PragyaTbia, 1 year ago

Find the integrals (primitives):
\rm \displaystyle\int \frac{1}{1-\cos \frac{x}{2} }\ dx

Answers

Answered by hukam0685
1
We know that from half angle formula

1 - cos \frac{x}{2} = 2 {sin}^{2} (\frac{x}{4} ) \\ \\
\int \frac{1}{1-\cos \frac{x}{2} }\ dx \\ \\ \int \frac{1}{2 \: {sin}^{2} \frac{x}{4} }\ dx \\ \\ = \frac{1}{2} \int {cosec}^{2} \frac{x}{4} \: dx \\ \\
we know that
\int \: {cosec}^{2} x \: dx = - cot \: x + C\\ \\
So
\frac{1}{2} \int {cosec}^{2} \frac{x}{4} \: dx \\ \\ = \frac{4}{2}( - cot \: \frac{x}{4} ) + C \\ \\ \int \frac{1}{1-\cos \frac{x}{2} }\ dx= - 2cot \: \frac{x}{4} + C\\\\
Hope it helps you.
Similar questions