Find the integrals (primitives):
Answers
Answered by
0
We know that
![2 \: sin \: A\: cos \: B = sin(A + B) + sin \: (A - B) \\ \\ so \\ \:\int \sin 4x.\cos 3x \ dx \\ \\ = \int \frac{2}{2} \sin 4x.\cos 3x \ dx \\ \\ \frac{1}{2} \int sin(4x+ 3x) + sin \: (4x - 3x)dx \\ \\ \frac{1}{2} \int sin(7x) + sin \: (x)dx \\ \\ \frac{1}{2} \int (sin(7x) + sin \: ( x))dx \\ \\ 2 \: sin \: A\: cos \: B = sin(A + B) + sin \: (A - B) \\ \\ so \\ \:\int \sin 4x.\cos 3x \ dx \\ \\ = \int \frac{2}{2} \sin 4x.\cos 3x \ dx \\ \\ \frac{1}{2} \int sin(4x+ 3x) + sin \: (4x - 3x)dx \\ \\ \frac{1}{2} \int sin(7x) + sin \: (x)dx \\ \\ \frac{1}{2} \int (sin(7x) + sin \: ( x))dx \\ \\](https://tex.z-dn.net/?f=2+%5C%3A+sin+%5C%3A+A%5C%3A+cos+%5C%3A+B+%3D+sin%28A+%2B+B%29+%2B+sin+%5C%3A+%28A+-+B%29+%5C%5C+%5C%5C+so+%5C%5C+%5C%3A%5Cint+%5Csin+4x.%5Ccos+3x+%5C+dx+%5C%5C+%5C%5C+%3D+%5Cint+%5Cfrac%7B2%7D%7B2%7D+%5Csin+4x.%5Ccos+3x+%5C+dx+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B2%7D+%5Cint+sin%284x%2B+3x%29+%2B+sin+%5C%3A+%284x+-+3x%29dx+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B2%7D+%5Cint+sin%287x%29+%2B+sin+%5C%3A+%28x%29dx+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B2%7D+%5Cint+%28sin%287x%29+%2B+sin+%5C%3A+%28+x%29%29dx+%5C%5C+%5C%5C+)
apply linearity
![\frac{1}{2} \int sin(7x) dx +\frac{1}{2} \int \: sin \: ( x)dx \\ \\ = \frac{ - cos \: 7x}{14} - \frac{cos \: x}{2} + C \\ \\ \int \sin 4x.\cos 3x \ dx=-\frac{cos \:x}{2} - \frac{cos \: 7x}{14} + C \\ \\ \frac{1}{2} \int sin(7x) dx +\frac{1}{2} \int \: sin \: ( x)dx \\ \\ = \frac{ - cos \: 7x}{14} - \frac{cos \: x}{2} + C \\ \\ \int \sin 4x.\cos 3x \ dx=-\frac{cos \:x}{2} - \frac{cos \: 7x}{14} + C \\ \\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D+%5Cint+sin%287x%29+dx+%2B%5Cfrac%7B1%7D%7B2%7D+%5Cint+%5C%3A+sin+%5C%3A+%28+x%29dx+%5C%5C+%5C%5C+%3D+%5Cfrac%7B+-+cos+%5C%3A+7x%7D%7B14%7D+-+%5Cfrac%7Bcos+%5C%3A+x%7D%7B2%7D+%2B+C+%5C%5C+%5C%5C+%5Cint+%5Csin+4x.%5Ccos+3x+%5C+dx%3D-%5Cfrac%7Bcos+%5C%3Ax%7D%7B2%7D+-+%5Cfrac%7Bcos+%5C%3A+7x%7D%7B14%7D+%2B+C+%5C%5C+%5C%5C+)
Hope it helps you.
apply linearity
Hope it helps you.
Similar questions
Math,
8 months ago
Psychology,
8 months ago
Math,
1 year ago
Math,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago