Math, asked by ishikadhanda8, 9 months ago

find the integration of 1 divided by x into 1+logx dx​

Answers

Answered by anindyaadhikari13
2

\bf\large\underline\blue{Question:-}

  • Find the integration of \int \frac{1 +  log(x) }{x}\: dx

\bf\large\underline\blue{Solution:-}

 \int\frac{1 +  log(x) }{x}\: dx

First of all, we will separate the fraction into two fractions,

\int\frac{1}{x}  +  \frac{ log(x) }{x}\: dx

Then, using the property of integrals,

 \int f(x) \pm g(x) \: dx =  \int f(x) \: dx \pm  \int g(x) \: dx

We get,

 \int \frac{1}{x}  \: dx +   \int\frac{ log(x) }{x \: dx}

Using  \int \frac{1}{x}  \: dx =  ln( |x| ) We have to evaluate the integral,

We get,

 ln( |x| )  +   \int\frac{ log(x) }{x \: dx}

Now, we have to evaluate the indefinite integral,

 =  ln( |x| )  +   \frac{ ln( {x}^{2} ) }{2 ln(10) }

Now, we have to add the constant of integration,

We get,

 =  ln( |x| )  +   \frac{ ln( {x}^{2} ) }{2 ln(10) }  + C ,C \in \R

\bf\large\underline\blue{Answer:-}

 ln( |x| )  +   \frac{ ln( {x}^{2} ) }{2 ln(10) }  + C ,C \in \R

Similar questions