Math, asked by chenglei, 1 year ago

Find the integration of

Attachments:

Answers

Answered by smartcow1
0
Hey there,

Answer:
dx(x2+2x+2)2=12(tan−1(x+1)+x+1x2+2x+2)+c
Explanation:

dx(x2+2x+2)2=∫dx((x+1)2+1)2

Let x+1=tanudx=sec2udu

dx((x+1)2+1)2=∫sec2u(1+tan2u)2du

=∫sec2u(sec2u)2du

=∫1sec2udu

=∫cos2udu

=∫12(1+cos2u)du

=12(1+cos2u)du

=12(u+12sin2u)+c

Since tanu=x+1⇒sinu=x+1x2+2x+2andcosu=1x2+2x+2

=12(tan−1(x+1)+122sinucosu)+c

=12(tan−1(x+1)+x+1x2+2x+21x2+2x+2)+c

=12(tan−1(x+1)+x+1x2+2x+2)+c

Hope this helps!


chenglei: wrong
nishantmalik1: okk
Similar questions