Find the integration of
Attachments:
Answers
Answered by
0
Hey there,
Answer:
∫dx(x2+2x+2)2=12(tan−1(x+1)+x+1x2+2x+2)+c
Explanation:
Answer:
∫dx(x2+2x+2)2=12(tan−1(x+1)+x+1x2+2x+2)+c
Explanation:
∫dx(x2+2x+2)2=∫dx((x+1)2+1)2
Let x+1=tanu⇒dx=sec2udu
∫dx((x+1)2+1)2=∫sec2u(1+tan2u)2du
=∫sec2u(sec2u)2du
=∫1sec2udu
=∫cos2udu
=∫12(1+cos2u)du
=12∫(1+cos2u)du
=12(u+12sin2u)+c
Since tanu=x+1⇒sinu=x+1√x2+2x+2andcosu=1√x2+2x+2
=12(tan−1(x+1)+122sinucosu)+c
=12(tan−1(x+1)+x+1√x2+2x+2⋅1√x2+2x+2)+c
=12(tan−1(x+1)+x+1x2+2x+2)+c
Hope this helps!
chenglei:
wrong
Similar questions