Math, asked by sanoujamrebika, 1 month ago

Find the integration of cosx with respect to x from 0 to π/2​

Answers

Answered by mathdude500
9

 \green{\large\underline{\sf{Solution-}}}

\rm :\longmapsto\:\displaystyle\int_{0}^{\dfrac{\pi}{2} } cosx \: dx

We know,

\boxed{\tt{ \displaystyle\int \: cosx \: dx \:  =  \: sinx \:  +  \: c \: }}

So, using this, we get

\rm \:  =  \:  \bigg|sinx\bigg|_{0}^{\dfrac{\pi}{2} }

\rm \:  =  \: sin\dfrac{\pi}{2} - sin0

\rm \:  =  \: 1 - 0

\rm \:  =  \: 1

Hence,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int_{0}^{\dfrac{\pi}{2} } cosx \: dx = 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions