Math, asked by ravindrakumargupta19, 8 months ago

find the integration of sin^2/3 x cos^3 x​

Answers

Answered by saounksh
2

ᴀɴsᴡᴇʀ

\int [sin(x)]^{\frac{2}{3}} cos^3(x)dx

 = \frac{3}{5}{\left[sin(x)\right]}^{\frac{5}{3}} - \frac{3}{11}{\left[sin(x)\right]}^{\frac{11}{3}} +C

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

 I = \int [sin(x)]^{\frac{2}{3}} cos^3(x)dx

 I = \int [sin(x)]^{\frac{2}{3}} cos^2(x)cos(x)dx

 I = \int [sin(x)]^{\frac{2}{3}}[1-sin^2(x)]cos(x)dx

Substitute  sin(x) = t

\to cos(x)dx = dt

 I = \int {t} ^{\frac{2}{3}}[1-t^2]dt

 I = \int [{t}^{\frac{2}{3}} -{t}^{\frac{8}{3}}]dt

 I = \left[\frac{{t}^{\frac{2}{3}+1}}{\frac{2}{3}+1} -\frac{{t}^{\frac{8}{3}+1}}{\frac{8}{3}+1}\right]+C

 I = \left[\frac{{t}^{\frac{5}{3}}}{\frac{5}{3}} -\frac{{t}^{\frac{11}{3}}}{\frac{11}{3}}\right]+C

 I = \left[\frac{3}{5}{t}^{\frac{5}{3}} - \frac{3}{11}{t}^{\frac{11}{3}}\right]+C

 I = \frac{3}{5}{\left[sin(x)\right]}^{\frac{5}{3}} - \frac{3}{11}{\left[sin(x)\right]}^{\frac{11}{3}}+C

Similar questions