Math, asked by prince5132, 6 months ago

Find the integration of
 \displaystyle \sf \:  \int \frac{ \sin^{2}x -  \cos ^{2} x}{ \sin \: x. \cos \: x}  \:  \: dx
★ Need quality quality answer.
★ Need spam free answer.​

Answers

Answered by BrainlyIAS
125

Formula Applied :

\sf \bullet\ \; cos^2x-sin^2x=cos2x\\\\\to\ \sf \pink{sin^2x-cos^2x=-cos2x}

\bullet\ \; \sf sin2x=2.sinx.cosx\\\\\to \sf \blue{sinx.cosx=\dfrac{sin2x}{2}}

\displaystyle \bullet\ \; \sf  \int \dfrac{dx}{x}=ln|x|

\bullet\ \; \sf \ln (ab)=\ln a+\ln b

Explanation :

\displaystyle \sf \int \dfrac{sin^2x-cos^2x}{sinx.cosx}dx\\\\\to \sf \int \dfrac{-cos2x}{\frac{sin2x}{2}}dx\\\\\to \sf \int \dfrac{-2cos2x}{sin2x}dx

Lets use substitution method ,

Let , u = sin2x

⇒ du = 2.cos2x.dx

\to \displaystyle \sf \int \dfrac{-du}{u}\\\\\to \sf -\int \dfrac{du}{u}\\\\\to \sf -ln|u|\\\\

\to \sf \red{-ln|sin2x|+c}

\to \sf - \ln |2sinx.cosx|+c

\to \sf - \ln |sinx.cosx|+(\ln 2+c)

\leadsto - \sf \red{\ln |sinx.cosx|+c}\ \; \bigstar

Alternate Method :

\displaystyle \sf \int \dfrac{sin^2x-cos^2x}{sinx.cosx}dx

\displaystyle \to \sf \int \left( \dfrac{sin^2x}{sinx.cosx}-\dfrac{cos^2x}{sinx.cosx}\right)dx

\displaystyle \to \sf \int \left( \dfrac{sinx}{cosx} -\dfrac{cosx}{sinx} \right)dx\\\\\to\ \sf \int (tanx-cotx)dx\\\\\to \sf \int tanx.dx-\int cotx.dx\\\\\to \sf ln|secx|-ln|sinx|+c

\to \sf ln\left| \dfrac{secx}{sinx}\right|+c

\to \sf ln\left| \dfrac{1}{sinx.cosx} \right|+c\\\\

\leadsto \sf \pink{-ln|sinx.cosx|+c}\ \; \bigstar

Answered by Anonymous
95

Answer :-

  • I = -log | sinx.cosx | + c

↪[ Refer to the attachment ]

Learn More :-

↪Integration Definition :-

  • The integration denotes the summation of discrete data. The integral is calculated to find the functions which will describe the area, displacement, volume, that occurs due to a collection of small data, which cannot be measured singularly. In a broad sense, in calculus, the idea of limit is used where algebra and geometry are implemented. Limits help us in the study of the result of points on a graph such as how they get closer to each other until their distance is almost zero. We know that there are two major types of calculus :-

  • Differential Calculus
  • Integral Calculus

Example :-

Question :-

  • Find the integral of the function :

∫x² dx.

Solution :-

↪ ∫x² dx

↪ (x³/3) + C.

Attachments:
Similar questions