Math, asked by aryan021212, 9 days ago

Find the integration of the following function

 \frac{sinx + cosx}{25 -  16sin2x}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{sinx + cosx}{25 - 16sin2x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{sinx + cosx}{9 + 16 - 16sin2x} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{sinx + cosx}{9 + 16(1 - sin2x)} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{sinx + cosx}{9 + 16( {sin}^{2}x +  {cos}^{2}x- 2sinxcos)} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{sinx + cosx}{9 + 16( {sinx - cosx)}^{2}x } \: dx

Now, to evaluate this integral, we use method of Substitution.

So, Substitute

 \purple{\rm :\longmapsto\:sinx - cosx = y}

 \purple{\rm :\longmapsto\:(cosx + sinx)dx = dy}

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\int\rm \dfrac{dy}{9 + 16 {y}^{2} }

\rm \:  =  \: 16\displaystyle\int\rm \dfrac{dy}{{y}^{2}  + \dfrac{9}{16} }

\rm \:  =  \: 16\displaystyle\int\rm \dfrac{dy}{{y}^{2}  + \bigg(\dfrac{3}{4}\bigg)^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c}}} \\

So, using this identity, we get

\rm \:  =  \: 16 \times \dfrac{4}{3}  \: {tan}^{ - 1} \dfrac{y}{ \dfrac{3}{4} } + c

\rm \:  =  \:\dfrac{64}{3}  \: {tan}^{ - 1} \dfrac{4y}{3} + c

\rm \:  =  \:\dfrac{64}{3}  \: {tan}^{ - 1} \dfrac{4(sinx - cosx)}{3} + c

Hence,

\boxed{\tt{ \rm \:\displaystyle\int\rm  \frac{sinx + cosx}{25 - 16sin2x} dx =  \:  \dfrac{64}{3}  \: {tan}^{ - 1} \dfrac{4(sinx - cosx)}{3} + c}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED :-

\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}} \\

\boxed{\tt{  {x}^{2} - 2xy +  {y}^{2}  =  {(x - y)}^{2} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \frac{sinx + cosx}{25 - 16sin2x} \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm \frac{sinx + cosx}{9 + 16 - 16sin2x} \: dx  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{sinx + cosx}{9 + 16(1 - sin2x)} \: dx  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{sinx + cosx}{9 + 16( {sin}^{2}x + {cos}^{2}x- 2sinxcos)} \: dx  \\  \\ \rm \:  =  \: \displaystyle\int\rm \frac{sinx + cosx}{9 + 16( {sinx - cosx)}^{2}x } \: dx

Now, to evaluate this integral, we use method of Substitution.

So, Substitute

\purple{\rm :\longmapsto\:sinx - cosx = y} \\  \\ \purple{\rm :\longmapsto\:(cosx + sinx)dx = dy} \\  \\ So,  \:  \:  \: on \:  \:  \:  substituting  \:  \:  \: these  \:  \:  \: values \:  \:  \: , we  \:  \:  \: get \\  \\ \rm \:  =  \: \displaystyle\int\rm \dfrac{dy}{9 + 16 {y}^{2} } \\  \\ \rm \:  =  \: 16\displaystyle\int\rm \dfrac{dy}{{y}^{2} + \dfrac{9}{16} }  \\  \\ \rm \:  =  \: 16\displaystyle\int\rm \dfrac{dy}{{y}^{2} + \bigg(\dfrac{3}{4}\bigg)^{2} }

We know,

\begin{gathered} \purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm \frac{dx}{ {x}^{2} + {a}^{2} } = \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c}}} \\ \end{gathered}

So, using this identity, we get

\rm \:  =  \: 16 \times \dfrac{4}{3} \: {tan}^{ - 1} \dfrac{y}{ \dfrac{3}{4} } + c  \\  \\ \rm \:  =  \:\dfrac{64}{3} \: {tan}^{ - 1} \dfrac{4y}{3} + c  \\  \\ \rm \:  =  \:\dfrac{64}{3} \: {tan}^{ - 1} \dfrac{4(sinx - cosx)}{3} + c

Hence,

\begin{gathered}\boxed{\tt{ \rm \:\displaystyle\int\rm \frac{sinx + cosx}{25 - 16sin2x} dx =  \: \dfrac{64}{3} \: {tan}^{ - 1} \dfrac{4(sinx - cosx)}{3} + c}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED :-

\begin{gathered}\boxed{\tt{ {sin}^{2}x + {cos}^{2}x = 1}} \\ \end{gathered}  \\  \\ \begin{gathered}\boxed{\tt{ {x}^{2} - 2xy + {y}^{2} = {(x - y)}^{2} \: }} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions