Math, asked by satya4552, 1 year ago

find the integration of this function​

Attachments:

Answers

Answered by ihrishi
0

Answer:

 \int \: ( {x}^{2}  + 1)^{10}  \\  =  \int( {x}^{20}  + 10 {x}^{18}  + 45 {x}^{16}  + 120 {x}^{14}  + 210 {x}^{12}  + 252 {x}^{10}  + 210 {x}^{8}  + 120 {x}^{6}  + 45 {x}^{4}  + 10 {x}^{2}  + 1)dx \\  =  \frac{ {x}^{21} }{21}  + 10  \frac{ {x}^{19} }{19}  + 45 \frac{ {x}^{17} }{17}  + 120 \frac{ {x}^{15} }{15}  + 210 \frac{ {x}^{13} }{13}  + 252 \frac{ {x}^{11} }{11}  + 210 \frac{ {x}^{9} }{9}  + 120 \frac{ {x}^{7} }{7}  + 45 \frac{ {x}^{5} }{5}  + 10 \frac{ {x}^{3} }{3}  + x + c

Further simplifications required.

Similar questions