Physics, asked by bhagatarun212, 3 months ago

find the intensity of the electric field due to the linear charge by the law of gauss and prove that the electric field is inversely proportional to the distance.​

Answers

Answered by nirman95
0

ELECTRIC FIELD DUE TO LINEAR CHARGE:

  • Let's consider a linear charge with an uniform linear charge density of \lambda.

  • Now, consider a cylindrical Gaussian surface around the linear charge.

  • ''q" refers to enclosed charge.

Applying Gauss' Law:

 \rm \displaystyle \oint \:  \vec{E}. \vec{ds} =  \dfrac{q}{  \epsilon_{0}}

 \rm  \implies\displaystyle \oint \:  E \times ds  \times  \cos( {0}^{ \circ} ) =  \dfrac{q}{  \epsilon_{0}}

 \rm  \implies\displaystyle \oint \:  E \times ds =  \dfrac{ \lambda h}{  \epsilon_{0}}

 \rm  \implies\displaystyle E\oint \ ds =  \dfrac{ \lambda h}{  \epsilon_{0}}

 \rm  \implies\displaystyle E \times 2\pi rh=  \dfrac{ \lambda h}{  \epsilon_{0}}

 \rm  \implies\displaystyle E=  \dfrac{ \lambda }{ 2\pi r \epsilon_{0}}

 \rm  \implies\displaystyle E \propto \:  \dfrac{1}{r}

[Hence Proved]

Similar questions