Physics, asked by pandeyrajkumar8526, 8 months ago

find the intergation of (x2+2x)dx = x2dx +2(xdx​

Answers

Answered by Anonymous
1

 \\ \rm \int(x^2 + 2 x). dx \\  \\  \rm Integrate \:  the  \: sum  \: term \:  by \:  term  \: and  \\  \rm factor \:  out  \: constants: \\  \rm \implies  \int x^2. dx + 2  \int x .dx \\  \\  \rm By \:  using \:  power  \: rule, \\  \rm  \int {x}^{n} .dx =  \dfrac{ {x}^{n + 1} }{n + 1}  :  \\  \rm \implies  \dfrac{ {x}^{3} }{3}  +  \cancel{2} \times  \dfrac{ {x}^{2} }{ \cancel{2}}  + c \\  \\  \rm \implies  \dfrac{ {x}^{3} }{3}  +  {x}^{2}  + c

Answered by Anonymous
212

♣ Qᴜᴇꜱᴛɪᴏɴ :

\bf{\int \left(x^2+2x\right)dx=x^2dx+2\left(xdx\right)dx}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\bf{\int \:x^2+2xdx=\dfrac{x^3}{3}+x^2+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ :

\bf{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx}

\sf{=\int \:x^2dx+\int \:2xdx}

ꜱᴏʟᴠᴇ \bf{\int \:x^2dx} :

\sf{Apply\:the\:Power\:Rule}:\quad \int x^adx=\dfrac{x^{a+1}}{a+1},\:\quad \:a\ne -1}

\sf{=\dfrac{x^{2+1}}{2+1}}

\sf{Simplify}

\sf{=\dfrac{x^3}{3}}

ꜱᴏʟᴠᴇ \bf{\int \:2xdx} :

\sf{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx}

\sf{=2\cdot \int \:xdx}

\sf{Apply\:the\:Power\:Rule}:\quad \int x^adx=\dfrac{x^{a+1}}{a+1},\:\quad \:a\ne -1}

\sf{=2\cdot \dfrac{x^{1+1}}{1+1}}

ꜱɪᴍᴘʟɪꜰʏ \sf{2\cdot \dfrac{x^{1+1}}{1+1}} :

\sf{Add\:the\:numbers:}\:1+1=2}

\sf{=2\cdot \dfrac{x^2}{2}}

\sf{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}}

\sf{=\dfrac{x^2\cdot \:2}{2}}

\sf{=x^2}

\bf{\int \:x^2dx+\int \:2xdx} = \bf{\dfrac{x^3}{3}+x^2}

\sf{Add\:a\:constant\:to\:the\:solution}

\boxed{\bf{=\frac{x^3}{3}+x^2+C}}

Similar questions