Math, asked by thakursi758, 4 months ago

find the interior angle of the heptagon whose interior angle are in the ratio 5 ratio 7 ratio 4 ratio 3 ratio 6 ratio 8 ratio 3​

Answers

Answered by snehitha2
5

Answer :

The angles are 125° , 175° , 100° , 75° , 150° , 200° , 75°

Step-by-step explanation:

Given,

The interior angles of the heptagon are in the ratio 5 : 7 : 4 : 3 : 6 : 8 : 3

To find,

the interior angles = ?

Solution,

Let the interior angles of the heptagon be

  • 5x
  • 7x
  • 4x
  • 3x
  • 6x
  • 8x
  • 3x

Sum of all interior angles of a polygon, having n sides = 180° (n−2)

Heptagon has 7 sides,

put n = 7

Sum of all interior angles of heptagon = 180° (7 - 2)

                                                                = 180° (5)

                                                                = 900°

Sum of all interior angles of heptagon = 900°

5x + 7x + 4x + 3x + 6x + 8x + 3x = 900°

                      36x     =    900°

                          x     =    900°/36

                          x     =    25°

5x = 5(25°) = 125°

7x = 7(25°) = 175°

4x = 4(25°) = 100°

3x = 3(25°) = 75°

6x = 6(25°) = 150°

8x = 8(25°) = 200°

3x = 3(25°) = 75°

∴ The angles are 125° , 175° , 100° , 75° , 150° , 200° , 75°

Similar questions