find the internal energy of two moles of a diatomic gas at 300k.
Answers
Answer:
Given that:-
P
ext.
=1atm
P
1
=5atm
P
2
=2atm
T
1
=300K
T
2
=T(say)=?
n=2
C
V
=
2
5
R
For an adiabatic process,
W=nC
V
dT=−PΔV
∴nC
V
(T
2
−T
1
)=−P
ext
(V
2
−V
1
)
⇒2×
2
5
R(T−300)=−1(
P
2
nRT
2
−
P
1
nRT
1
)
⇒5R(T−300)=−2R(
2
T
−
5
300
)
⇒5T−1500=−T+120
⇒6T=1620⇒T=270K
∴T
2
=T=270K
∴W=nC
V
dT=2×
2
5
R×(270−300)=−1247.1J
⇒q=0
ΔU=W=−1247.1J
∴ΔH=ΔU+nRΔT
⇒ΔH=−1247.1+2×8.314×(270−300)=−1745.94J
Explanation:
Mark me as a brainliest
The internal energy of two moles of diatomic gas at 300k is 1745.94 J
Given:
Diatomic gas at 300k
Solution:
Internal Energy: Internal energy encompasses all of the energy contained within a given system, including kinetic energy of molecules and energy stored in all chemical bonds between molecules. Every time a system is changed, there are energy transfers and conversions due to the interactions of heat, work, and internal energy.
We need to the internal energy of two moles of a diatomic gas at 300k,
For a diatomic gas,
P1= 5 atm, P2 = 2 atm
T1 = 300k
Cv = 5/2 R
P(ext) = ⊥
n =2
For a Adiabatic process,
W = n*Cv(T2 - T1) = - P(ext)
⇒ 2*5/2 R (T2 - 300) = -⊥*nR
⇒ 5(T2 - 300) = -2*
⇒ 5T2 - 1500 = -2*5( T2 - 120/10)
⇒ 5T2 - 1500 = -10(T2 - 120/10)
⇒ 5T2 - 1500 = -T2 + 120
≅ 6T2 = 1620 ≡ T2 = 270K
From, W = n*Cv(T2 - T1)
⇒2*5/2 R*(-30)
⇒5*8.314*(-30)
≅ -1247.1 J
q = 0
ΔV = W
ΔH= ΔV+nRΔT
= -1247.1 + 2*8.314*(-30)
⇒ 1745.94 J
∴ The internal energy of two moles of diatomic gas at 300k is 1745.94 J.
#SPJ2