Math, asked by guptaananya2005, 1 month ago

Find the interval of increasing and decreasing for,

f(x) = sinx + cosx \: on \: (0, 2\pi)


Please don't spam. Let me learn. ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = sinx + cosx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx}( sinx + cosx)

\rm :\longmapsto\:f'(x) = cosx - sinx

For critical points,

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\:cosx - sinx = 0

\rm :\longmapsto\:cosx = sinx

\rm :\longmapsto\:\dfrac{sinx}{cosx}  = 1

\rm :\longmapsto\:tanx = 1

\bf\implies \:x = \dfrac{\pi}{4} \:  \:   \: or \: \:  \:  \dfrac{5\pi}{4}

Now, Let we check the sign in intervals.

\begin{gathered}\boxed{\begin{array}{c|c}  \bf \: Interval  & \bf  Sign \: of \: f'(x)\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \bigg(0,\dfrac{\pi}{4}\bigg) & \sf  + ve \\ \\ \sf \bigg(\dfrac{\pi}{4},\dfrac{5\pi}{4}\bigg) & \sf  - ve \\ \\ \sf \bigg(\dfrac{\pi}{4},2\pi\bigg) & \sf  + ve \end{array}} \\ \end{gathered}

So, For increasing,

\rm :\longmapsto\:f'(x) > 0

\bf\implies \:\boxed{ \tt{ \: x \:  \in \: \bigg(0,\dfrac{\pi}{4}\bigg) \cup \: \bigg(\dfrac{\pi}{4},2\pi\bigg)}}

Now, For decreasing,

\rm :\longmapsto\:f'(x)  <  0

\bf\implies \:\boxed{ \tt{ \: x \:  \in \: \bigg(\dfrac{\pi}{4},\dfrac{5\pi}{4}\bigg) \:  \: }}

More to know,

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions