Math, asked by guptaananya2005, 1 month ago

Find the interval of increasing and decreasing

f(x) = log(1 + x) -  \frac{2x}{x + 2}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = log(1 + x) - \dfrac{2x}{x + 2}

Let first define the domain of f(x).

\boxed{ \tt{ \: x + 1 > 0 \: \rm \implies\:x >  - 1 \: }}

Now, Consider

\rm :\longmapsto\:f(x) = log(1 + x) - \dfrac{2x}{x + 2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx}\bigg[ log(1 + x) - \dfrac{2x}{x + 2}\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx} \frac{u}{v}  =  \frac{v\dfrac{d}{dx}u - u\dfrac{d}{dx}v}{ {v}^{2} } \:  \: }}

So, using these, we get

\rm :\longmapsto\:f'(x) = \dfrac{1}{x + 1}  - \dfrac{(x + 2)\dfrac{d}{dx}(2x) - 2x\dfrac{d}{dx}(x + 2)}{ {(x + 2)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{1}{x + 1}  - \dfrac{(x + 2)(2) - 2x(1 + 0)}{ {(x + 2)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{1}{x + 1}  - \dfrac{2x + 4 - 2x}{ {(x + 2)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{1}{x + 1}  - \dfrac{4}{ {(x + 2)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{ {(x + 2)}^{2} -  4(x + 1)}{ (x + 1){(x + 2)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{  {x}^{2}  + 4 + 4x - 4x - 4}{ (x + 1){(x + 2)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{  {x}^{2}  }{ (x + 1){(x + 2)}^{2} }

As x + 1 > 0

\bf\implies \:f'(x) \geqslant 0

\bf\implies \:f(x) \: is \: increasing \:  \forall \: x \in \: ( - 1, \:  \infty )

More to know :

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions