Math, asked by khushi15686, 1 day ago

Find the interval of strictly increasing and decreasing for the function if exist

f(x) =  \frac{x}{ {x}^{2} + 1 }

Answers

Answered by talpadadilip417
17

Step-by-step explanation:

Answer

\huge\mathcal\colorbox{cyan}{{\color{darkorange}{(☞∀ŋʂᏯɛཞ࿐)}}}

\boxed{{\mathbb\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}

Step-by-step explanation:

hope it help you.

thanks.

Attachments:
Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \dfrac{x}{ {x}^{2}  + 1}  \\

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx} f(x) =\dfrac{d}{dx}\bigg( \dfrac{x}{ {x}^{2}  + 1}\bigg)  \\

We know,

\boxed{\tt{ \:  \:  \dfrac{d}{dx} \frac{u}{v} \:  =  \:  \frac{v\dfrac{d}{dx}u \:   - \: u\dfrac{d}{dx}v}{ {v}^{2} }  \:  \: }} \\

So, using this, we get

\rm \: f'(x) = \dfrac{( {x}^{2} + 1)\dfrac{d}{dx}x - x\dfrac{d}{dx}( {x}^{2} + 1)}{ {( {x}^{2}  + 1)}^{2} }  \\

\rm \: f'(x) = \dfrac{( {x}^{2} + 1)(1) - x(2x - 0)}{ {( {x}^{2}  + 1)}^{2} }  \\

\rm \: f'(x) = \dfrac{{x}^{2} + 1 -  {2x}^{2} }{ {( {x}^{2}  + 1)}^{2} }  \\

\rm \: f'(x) = \dfrac{1 -  {x}^{2} }{ {( {x}^{2}  + 1)}^{2} }  \\

\rm \: f'(x) = \dfrac{(1 - x)(1 + x) }{ {( {x}^{2}  + 1)}^{2} }  \\

So, critical points are x = - 1 and x = 1.

So, change of sign in intervals are as follow :

\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval & \bf Sign \: of \: f'(x) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ( -  \infty , - 1) & \sf  - ve \\ \\ \sf ( - 1,1) & \sf  + ve \\ \\ \sf (1, \infty ) & \sf  - ve \end{array}} \\ \end{gathered} \\

So, for strictly increasing,

\rm \: f'(x) > 0

\rm\implies \:x \:  \in \: ( - 1,1) \\

And, for strictly decreasing,

\rm \: f'(x) < 0 \\

\rm\implies \:x \:  \in \: ( -  \infty , - 1) \:  \cup \: (1, \infty ) \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions