Math, asked by kanha36368, 2 months ago

find the interval of
 \frac{2x}{2 {x}^{2}  + 5x + 2}  >  \frac{1}{x + 1}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{2x}{2 {x}^{2} + 5x + 2} > \dfrac{1}{x + 1}

can be rewritten as

\rm :\longmapsto\:\dfrac{2x}{2 {x}^{2} + 5x + 2} - \dfrac{1}{x + 1} > 0

\rm :\longmapsto\:\dfrac{2x(x + 1) - ( {2x}^{2}  + 5x + 2)}{(2 {x}^{2} + 5x + 2)(x + 1)} > 0

\rm :\longmapsto\:\dfrac{2 {x}^{2}  + 2x - {2x}^{2} - 5x -  2}{(2 {x}^{2} + 4x  + x+ 2)(x + 1)} > 0

\rm :\longmapsto\:\dfrac{- 3x -  2}{(2x(x + 2)+1(x+ 2))(x + 1)} > 0

\rm :\longmapsto\:\dfrac{- (3x  + 2)}{(2x + 1)(x+ 2)(x + 1)} > 0

\rm :\longmapsto\:\dfrac{ (3x  + 2)}{(2x + 1)(x+ 2)(x + 1)} < 0

For domain to be defined,

\rm :\longmapsto\:x \:  \ne \:  - 1, \:  - 2, \:  -  \:  \dfrac{1}{2}

Now, let we find the critical points and check the sign in intervals.

\rm :\longmapsto\:x =  - 2, \:  - 1, \:  -  \dfrac{2}{3}, \:  -  \:  \dfrac{1}{2}

\begin{gathered}\boxed{\begin{array}{c|c} \bf Intervals & \bf Sign \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x <  - 2 & \sf  + ve \\ \\ \sf  - 2 < x <  - 1 & \sf - ve\\ \\ \sf  - 1 < x \leqslant  -  \dfrac{2}{3}  & \sf  + ve\\ \\ \sf  -  \dfrac{2}{3} \leqslant x <  -  \dfrac{1}{2}   & \sf  - ve\\ \\ \sf x >  -  \dfrac{1}{2}  & \sf  + ve \end{array}} \\ \end{gathered}

\bf :\implies\: \:x \:  \in \: ( - 2, \:  - 1) \:  \cup \: \bigg[ -  \: \dfrac{2}{3},  -  \: \dfrac{1}{2}\bigg)

Additional Information :-

If a and b are two positive real numbers such that a < b, then

\boxed{ \sf{ \:(x - a)(x - b) &lt; 0 \: \rm \implies\:\:a &lt; x &lt; b}}

\boxed{ \sf{ \:(x - a)(x - b)  \leqslant  0 \: \rm \implies\:\:a  \leqslant  x  \leqslant  b}}

\boxed{ \sf{ \:(x - a)(x - b)  &gt;  0 \: \rm \implies\:\:x &lt; a \:  \: or \:  \: x &gt; b}}

\boxed{ \sf{ \:(x - a)(x - b)   \geqslant   0 \: \rm \implies\:\:x  \leqslant  a \:  \: or \:  \: x  \geqslant  b}}

Similar questions