Math, asked by donkrishna4271, 1 month ago

find the invariant points of the transformation f(z)=1/z-2i

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{f(z)=\dfrac{1}{z-2i}}

\underline{\textbf{To find:}}

\textsf{Invariant points of f(z)}

\underline{\textbf{Solution:}}

\textsf{The invariant points are obtained by solving}

\textsf{the equation f(z)=z}

\mathsf{Consider,}

\mathsf{f(z)=z}

\mathsf{\dfrac{1}{z-2i}=z}

\mathsf{1=z(z-2i)}

\mathsf{1=z^2-2i\,z}

\textsf{Rearranging terms, we get}

\mathsf{z^2-2i\,z-1=0}

\mathsf{z^2-2i\,z+i^2=0}

\mathsf{(z-i)^2=0}

\implies\mathsf{z=i}

\therefore\textbf{The invariant point is i}

Answered by ADITYABHAIYT
1

Solution:

The invariant points are obtained by solving

the equation f(z)=z

Consider,

f(z) = z

1 Z N 21 Z

1 = z(z = 2i)

1 = z² - 2iz

Rearranging terms, we get

z² - 2iz-1=0

Similar questions