Math, asked by vignesh10m2002, 2 months ago

Find the invariant points of the transformation w = 2z+6/z+7

Answers

Answered by mehakpreetsinghh1
1

Answer:

Invariant points of a bilinear transformation w=1+iz1−iz is

⇒1+iz=z(1−iz)

⇒1+iz=z−iz2.

⇒iz2+iz−z+1=0.

iz2+z(i−1)+1=0.

Answered by pulakmath007
3

The invariant points of the transformation w are - 6 & 1

Given :

The transformation w = 2z + 6/z + 7

To find :

The invariant points of the transformation w

Solution :

Step 1 of 2 :

Write down the given transformation

Here the given transformation is

\displaystyle \sf{ w =  \frac{2z + 6}{z + 7}  }

Step 2 of 2 :

Find the invariant points of the transformation

For the invariant points of the transformation w we have

\displaystyle \sf{ w =  z  }

\displaystyle \sf{ \implies \frac{2z + 6}{z + 7} = z}

\displaystyle \sf{ \implies  {z}^{2} + 7z = 2z + 6 }

\displaystyle \sf{ \implies  {z}^{2} + 5z - 6 = 0 }

\displaystyle \sf{ \implies  {z}^{2} + (6 - 1)z - 6 = 0 }

\displaystyle \sf{ \implies  {z}^{2} + 6z -z - 6 = 0 }

\displaystyle \sf{ \implies  z(z + 6) - 1(z + 6) = 0 }

\displaystyle \sf{ \implies  (z + 6) (z  - 1) = 0 }

\displaystyle \sf{ \implies  z =  - 6 \:,  \: 1}

Hence the invariant points of the transformation w are - 6 & 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

https://brainly.in/question/38173619

#SPJ3

Similar questions
Math, 10 months ago