Math, asked by anithasanthakumari19, 4 months ago

Find the inverse laplace transform for 1/s(s+a) ?

Answers

Answered by chinmoolachinmoola
10

Answer:

3a answer please follow me

Answered by Manmohan04
4

Given,

\[\frac{1}{{s\left( {s + a} \right)}}\]

Solution,

\[ = \frac{1}{{s\left( {s + a} \right)}}\]

Calculate the partial fraction,

\[ = \frac{A}{s} + \frac{B}{{s + a}}\]

\[ = \frac{{As + Aa + Bs}}{{s + a}}\]--------(1)

\[\begin{array}{l}A + B = 0\\aA = 1\\ \Rightarrow A = \frac{1}{a}\\ \Rightarrow B =  - \frac{1}{a}\end{array}\]

Put the values in equation 1,

\[ = \frac{1}{{as}} - \frac{1}{{a\left( {s + a} \right)}}\]

Calculate the inverse Laplace transform,

\[ = {L^{ - 1}}\left( {\frac{1}{{as}}} \right) - {L^{ - 1}}\left( {\frac{1}{{a\left( {s + a} \right)}}} \right)\]

\[ = \frac{1}{a}{L^{ - 1}}\left( {\frac{1}{s}} \right) - \frac{1}{a}{L^{ - 1}}\left( {\frac{1}{{\left( {s + a} \right)}}} \right)\]

\[ = \frac{1}{a} \times 1 - \frac{1}{a} \times {e^{ - at}}\]

\[ = \frac{1}{a}\left( {1 - {e^{ - at}}} \right)\]

Hence the inverse Laplace transform is \[\frac{1}{a}\left( {1 - {e^{ - at}}} \right)\]

Similar questions