Math, asked by dhanapald2003, 24 days ago

find the inverse laplace transform of 1/(s+1)(s+2)

Answers

Answered by YoIMop
2

Answer:

see image for solution.

Attachments:
Answered by hukam0685
0

The inverse Laplace transformation of f(s) is

 \bf \: f(t) =  {e}^{ - t}  -  {e}^{ - 2t}  \\

Given:

  • f(s) =  \frac{1}{(s + 1)(s + 2)}  \\

To find:

  • Inverse Laplace transformation of f(s).

Solution:

Concept/Formula to be used:

  • Do a partial fraction of f(s).
  • Partial fraction: f(x) =  \frac{1}{(x + a)(x + b)}  =  \frac{A}{x + a}  +  \frac{B}{x + b}  \\
  • Write an inverse transformation of f(s).
  •  \text{Inverse Laplace transformation of} \:  \left( \frac{1}{x - a} \right)  =  {e}^{at}  \\

Step 1:

Do the partial fraction of f(s).

  \frac{1}{(s + 1)(s + 2)}   =  \frac{A}{s + 1}  +  \frac{B}{s + 2} \\

Find the values of A and B.

 \frac{1}{(s + 1)(s + 2)} =  \frac{A(s + 2) + B(s + 1)}{(s + 1)(s + 2)}   \\

\frac{1}{(s + 1)(s + 2)} =  \frac{As + 2A + Bs + B}{(s + 1)(s + 2)}   \\

compare the coefficients of 's' and constant term.

A+B= 0 ...eq1\\

2A + B = 1...eq2

Subtract eq2 from eq1.

A+B= 0 \\ 2A+ B = 1 \\ ( - ) \: ( - ) \: ( - ) \\  -  -  -  -  -  -  -  \\  - A =  - 1 \\

\bf A = 1 \\

Put the value of A in eq 1.

\bf B =  - 1 \\

So,

The function can be written as

 \bf = \frac{1}{s + 1} -  \frac{1}{s + 2}   \\

Step 2:

Write the inverse Laplace transformation of f(s).

 {L}^{ - 1}f(s) ={L}^{ - 1} \left( \frac{1}{s + 1} \right) -   {L}^{ - 1} \left( \frac{1}{s + 2} \right)   \\

\bf {L}^{ - 1}f(s) =  {e}^{ - t}  -  {e}^{ - 2t}  \\

Thus,

The inverse Laplace transformation of f(s) is \bf f(t) =  {e}^{ - t}  -  {e}^{ - 2t}  \\

Learn more:

1) find the inverse laplace transform of 1/(s+3)^5

https://brainly.in/question/29013728

2) Compute the inverse laplace transform of 7/(s-1)^3

https://brainly.in/question/22423169

#SPJ2

Similar questions