Math, asked by gunasekharchintapall, 1 month ago

find the inverse laplace transform of
14S+10/49S²+28S+13​

Answers

Answered by Jaswindar9199
2

The inverse Laplace transformation of the equation is 2cos(3t) + 2sin(3t)

GIVEN:-

14S+10/49S²+28S+13

TO FIND:- inverse Laplace transform of the given

SOLUTION:-

 {L}^{ - 1}   \times  \frac{(14s + 10)}{(49s ^ 2 + 28s + 13)}

 {L}^{ - 1}  \times  (14s + 10)/((7s + 2) ^ 2 + 3 ^ 2)

 {L}^{ - 1}   \times  (2(7s + 2) + 6)/((7s + 2) ^ 2 + 3 ^ 2)

 {2L}^{ - 1}    \times  (7s + 2)/((7s + 2) ^ 2 + (3) ^ 2) +  {6L}^{ - 1}   \times  1/((7s + 2) ^ 2 + (3) ^ 2)

2 cos(3t)+ 6 \times  1/3  \times  sin(3t)

2cos(3t) + 2sin(3t)

Hence, The inverse Laplace transformation of the equation is 2cos(3t) + 2sin(3t)

#SPJ1

Similar questions