Math, asked by Anonymous, 1 year ago

Find the inverse of given functions :-

(a) \: f(x) =  log_{a}(x +  \sqrt{ {x }^{2} + 1 } )

(b) \: y =  \frac{ {10}^{x}  -  {10}^{ - x} }{ {10}^{x} +  {10}^{ - x}  }  + 1

✔️✔️ quality answer needed✔️✔️

❌❌NO SPAMMING❌❌​

Answers

Answered by rahman786khalilu
5

Hope this solution will help you mark as brainliest

Attachments:
Answered by generalRd
5

ANSWER

a) f^{-1}(x) = \dfrac{a^{x} + a^{-x} }{2}

b)f^{-1}(x) = log_{10}\sqrt{\dfrac{x}{2 - x} }

Step By Step Explanation

a)Here, we have >

(a) \: f(x) = log_{a}(x + \sqrt{ {x }^{2} + 1 } )

Now,

log_{a}(x + \sqrt{x^{2} + 1}) = y

So, x + \sqrt{x^{2} + 1} =a^{y} --------(i)

x - \sqrt{x^{2} + 1}=a^{-y} --------(i)(Conjugate)

On adding (i) and (ii) we get ->

2x = a^{y} + a^{-y}

\implies x = \dfrac {a^{y} + a^{-y} }{2}

But we know that >>

f(x ) = y and

 x = f^{-1}(y)

Now,

f^{-1}(y) =\dfrac{a^{y} + a^{-y} }{2}

\implies f^{-1}(x) =\dfrac{a^{x} + a^{-x} }{2}

b)Here we have >>

\: y = \dfrac{ {10}^{x} - {10}^{ - x} }{ {10}^{x} + {10}^{ - x} } + 1

\implies \: y = \dfrac{ 2 \: .\: {10}^{x} }{ {10}^{x} + {10}^{ - x} } + 1

\implies \: y = \dfrac{ 2\: .\: {10}^{x} }{ {10}^{x} + {10}^{ - x} }

\implies \: y = \dfrac{ 2\: .\: {10}^{x} }{ {10}^{2x} + 1 }

\implies \:10^{2x}y + y = 2\: . \:{10}^{x}

\implies 10^{2x}(y-2)= -y

\implies 10^{2x}=\dfrac{-y}{y-2}

\implies 10^{2x}=\dfrac{y}{2-y}

\implies log_{10}(10^{2x}) =log_{10}\dfrac{y}{2-y}

\implies {2x} =log_{10}\dfrac{y}{2-y}

\implies x=log_{10}\sqrt{\dfrac{y}{2-y} }

\implies f^{-1}(y) =log_{10} \sqrt{\dfrac{y}{2-y} }

\implies f^{-1}(x) =log_{10} \sqrt{\dfrac{x}{2-x} }


rahman786khalilu: check the answer
generalRd: checked ✅
Similar questions