Math, asked by rojahdrojahd, 5 days ago

find the inverse of matrix by using elementary operation [1 -2. 2 1]​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \bigg[ \begin{matrix}1& - 2 \\ 2&1 \end{matrix} \bigg]

We know,

By Elementary Row Transformation Method,

\rm :\longmapsto\:A = I \: A

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 2 \\ 2&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& 0 \\ 0&1 \end{matrix} \bigg] \: A

\rm :\longmapsto\:\boxed{ \tt{ \: OP \: R_2 \:  \to \: R_2 - 2R_1 \: }}

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 2 \\ 0&5 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& 0 \\  - 2&1 \end{matrix} \bigg] \: A

\rm :\longmapsto\:\boxed{ \tt{ \: OP \: R_2 \:  \to \:  \frac{1}{5}  \: R_2  \: }}

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 2 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& 0 \\   -  \dfrac{2}{5} & \dfrac{1}{5}  \end{matrix} \bigg] \: A

\rm :\longmapsto\:\boxed{ \tt{ \: OP \: R_1 \:  \to \: R_1  +  2R_2 \: }}

\rm :\longmapsto\:\bigg[ \begin{matrix}1& 0 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix} \dfrac{1}{5} &  \dfrac{2}{5}  \\   -  \dfrac{2}{5} & \dfrac{1}{5}  \end{matrix} \bigg] \: A

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  {AA}^{ - 1} \:  =  \: I \: }}

On comparing, we get

\rm :\longmapsto\:\boxed{ \tt{ \:  {A}^{ - 1} \:  =  \: \bigg[ \begin{matrix} \dfrac{1}{5} &  \dfrac{2}{5}  \\   -  \dfrac{2}{5} & \dfrac{1}{5}  \end{matrix} \bigg] \: }}

Verification :-

\rm :\longmapsto\: {AA}^{ - 1}

\rm \:  =  \:\bigg[ \begin{matrix}1& - 2 \\ 2&1 \end{matrix} \bigg] \times \bigg[ \begin{matrix} \dfrac{1}{5} &  \dfrac{2}{5}  \\   -  \dfrac{2}{5} & \dfrac{1}{5}  \end{matrix} \bigg]

\rm \:  =  \:\bigg[ \begin{matrix}1& - 2 \\ 2&1 \end{matrix} \bigg] \times \dfrac{1}{5} \times \bigg[ \begin{matrix}1&2 \\  - 2&1 \end{matrix} \bigg]

\rm \:  =  \:\dfrac{1}{5}\bigg[ \begin{matrix}5& 0 \\ 0&5 \end{matrix} \bigg]

\rm \:  =  \:\bigg[ \begin{matrix}1& 0 \\ 0&1 \end{matrix} \bigg]

Hence, Verified

Similar questions