Math, asked by swanhayden7, 9 days ago

Find the inverse of the following matrix​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given matrix is

\rm \: A  \: =  \: \begin{gathered}\sf \left[\begin{array}{ccc}x&0&0\\0& y&0\\ 0&0&z\end{array}\right]\end{gathered} \\

Now, to find inverse of this matrix, we use Elementary Row Transformation Method

Using Elementary Row Transformation Method, we have

\rm \: A \:  =  \: I \: A \\

where I is the identity matrix of order as that of A.

So, on substituting the values of A and I, we get

\rm \: \begin{gathered}\sf \left[\begin{array}{ccc}x&0&0\\0& y&0\\ 0&0&z\end{array}\right]\end{gathered} \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered}A \\

 \:  \:  \:  \:  \:  \: \:  \:  \boxed{\sf{  \:OP \: R_1 \:  \to \:  \frac{1}{x} \: R_1 \: }} \\

\rm \: \begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0& y&0\\ 0&0&z\end{array}\right]\end{gathered} \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc} \dfrac{1}{x} &0&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered}A \\

 \:  \:  \:  \:  \:  \: \:  \:  \boxed{\sf{  \:OP \: R_2 \:  \to \:  \frac{1}{y} \: R_2\: }} \\

\rm \: \begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0& 1&0\\ 0&0&z\end{array}\right]\end{gathered} \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc} \dfrac{1}{x} &0&0\\0&  \dfrac{1}{y} &0\\ 0&0&1\end{array}\right]\end{gathered}A \\

 \:  \:  \:  \:  \:  \: \:  \:  \boxed{\sf{  \:OP \: R_3\:  \to \:  \frac{1}{z} \: R_3\: }} \\

\rm \: \begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered} \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc} \dfrac{1}{x} &0&0\\0&  \dfrac{1}{y} &0\\ 0&0& \dfrac{1}{z} \end{array}\right]\end{gathered}A \\

which can be further rewritten as

\rm \: \begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0& 1&0\\ 0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc} {x}^{ - 1} &0&0\\0&  {y}^{ - 1} &0\\ 0&0& {z}^{ - 1} \end{array}\right]\end{gathered}A \\

We know,

\rm \:  {A \: A}^{ - 1} = I \\

So, on comparing, we get

\rm\implies \: {A}^{ - 1} \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc} {x}^{ - 1} &0&0\\0&  {y}^{ - 1} &0\\ 0&0& {z}^{ - 1} \end{array}\right]\end{gathered} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\rm \: A \: (adj \: A) = (adjA)A =  |A| I \:  \\

\rm \:  {AA}^{ - 1} =  {A}^{ - 1}A = I \:  \\

\rm \:  |adj \: A|  \:  =  \:  { |A| }^{n - 1}  \:  \\

\rm \:  |adj(adj \: A)|  \:  =  \:  { |A| }^{(n - 1)^{2} }  \:  \\

\rm \:  |AR|  =  |A| \:  |R|  \\

\rm \:  |k \: A|  =  {k}^{n}  |A|  \\

Answered by XxLUCYxX
3

Given matrix,

A\:=\: \:  \color{aqua} \begin{gathered}\left[\begin{array}{ccc}x&0&0 \\ 0&y&0 \\ 0&0&z\end{array}\right]\end{gathered}

The \: inverse \: of \: A \: will \: be \:  {A}^{ - 1}

So,

 \color{lime}\begin{gathered}\left[\begin{array}{ccc} {x}^{ - 1} &0 &0 \\ 0 & {y}^{ - 1} &0 \\ 0   &0 & {z}^{ - 1} \end{array}\right]\end{gathered}

Similar questions