Math, asked by khanalam0020, 15 days ago

find the inverse of the matrix
( 1 2 1 )
( 3 0 1 )
( 0 2 1 )
using adjoint method.

Attachments:

Answers

Answered by llAngelicBaell
6

Attachment

[ Kinda Mark as Brainliest ]

\huge{♡}{\underline{\mathtt{\pink{|}\orange{|}{\red{A}\pink{n}\green{g}\blue{e}\pink{l}\purple{i}\orange{c}\red{-}\pink{B}\green{a}\blue{e}\purple{|}\pink{|}}}}}{♡}

Attachments:
Answered by hukam0685
29

The inverse matrix is

\bf{A}^{ - 1}  =   \left[\begin{array}{ccc}  1& 0& - 1 \\ \\ \frac{ 3 }{ 2}& - \frac{1}{2} &   - 1\\ \\  - 3&  1& 3\end{array}\right] \\

Given:

  • \left[\begin{array}{ccc}1&2&1\\3&0&1\\0&2&1\end{array}\right] \\

To find:

  • Find the inverse of matrix.

Solution:

Inverse of matrix A is  {A}^{ - 1}  =  \frac{Adj. A }{ |A| }  \\

Step 1:

Let matrix is A.

 A =  \left[\begin{array}{ccc}1&2&1\\3&0&1\\0&2&1\end{array}\right] \\

Find its determinant.

 |A|  = \left | \begin{array}{ccc}1&2&1\\3&0&1\\0&2&1\end{array}\right |  \\

or

 |A|  = 1(0 - 2) - 2(3 - 0) + 1(6 - 0) \\

or

 |A|  = - 2 - 6 +6 \\

or

 |A|  =  - 2 \\

Because,

Determinant ≠0, Thus, inverse of matrix A exists.

Step 2:

Find Adjoint matrix; for that first find minor matrix then Co-factor matrix and take transpose of it.

M_{ij} = \left[\begin{array}{ccc} - 2&3&6\\0&1& 2\\2& - 2& - 6\end{array}\right] \\

Find Co-factor matrix.

\bf C_{ij}=(-1)^{i+j}M_{ij} \\

So,

C_{ij} = \left[\begin{array}{ccc} - 2& - 3&6\\0&1&  - 2\\2& 2& - 6\end{array}\right] \\

Take transpose of C to find Adjoint matrix.

Adj.(A) = \left[\begin{array}{ccc} - 2& 0&2\\ - 3&1&  2\\6&  - 2& - 6\end{array}\right] \\

Step 3:

Find inverse of matrix A.

 {A}^{ - 1}  =  \frac{Adj. A }{ |A| }  \\

or

 {A}^{ - 1}  =  \frac{ - 1 }{ 2} \left[\begin{array}{ccc} - 2& 0&2\\ - 3&1&  2\\6&  - 2& - 6\end{array}\right] \\

or

 {A}^{ - 1}  =  \frac{ 1 }{ 2} \left[\begin{array}{ccc} 2& 0& - 2\\ 3& - 1&   - 2\\ - 6&  2& 6\end{array}\right] \\

or

{A}^{ - 1}  =   \left[\begin{array}{ccc} 1& 0& - 1 \\ \\ \frac{ 3 }{ 2}& - \frac{1}{2} &   - 1\\ \\  - 3&  1& 3\end{array}\right] \\

Thus,

Inverse of matrix is

 \bf{A}^{ - 1}  =   \left[\begin{array}{ccc}  1& 0& - 1 \\ \\ \frac{ 3 }{ 2}& - \frac{1}{2} &   - 1\\ \\  - 3&  1& 3\end{array}\right] \\

_______________________

Learn more:

1) Find the inverse of the matrix ( if exists ) and state the reason if it doesn't exists.

[tex]\left[ \begin{array} {ccc}...

https://brainly.in/question/45794046

2) Find the adjoint and the inverse of the matrix \left[\begin{array}{ccc}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{arr...

https://brainly.in/question/7029406

Similar questions