Math, asked by Anonymous, 1 month ago

Find the inverse of the matrix ( if exists ) and state the reason if it doesn't exists.

\left[ \begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&1\end{array}\right]

Answers

Answered by hukam0685
33

Step-by-step explanation:

Given:\left[ \begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&1\end{array}\right]

To find: Inverse of matrix (if exists)

Solution:Inverse of a matrix exists if given matrix is non-singular.

Step 1: Find the determinant of given matrix

|A|=\left|\begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&1\end{array}\right|

|A|=2(3-2)-3(4-1)+4(8-3)

|A|=2×1-3×3+4×5

|A|=2-9+20

|A|=13

|A|≠0

Thus,

Inverse of matrix exist.

Step 2: Write matrix of Minors and co-factor matrix

M=\left[ \begin{array} {ccc}1&3&5 \\ -5&-2&1\\ -9&-14&-6\end{array}\right]

C=\left[ \begin{array} {ccc}1&-3&5 \\ 5&-2&-1 \\ -9&14&-6\end{array}\right]

Step 3:Write adjoint matrix by writing transpose of C.

A_{adj}=\left[ \begin{array} {ccc}1&5&-9 \\ -3&-2&14 \\ 5&-1&-6\end{array}\right]

Step 4: Write inverse of A

A^{-1}=\frac{1}{|A|}A_{adj}

A^{-1}=\frac{1}{13}\left[ \begin{array} {ccc}1&5&-9 \\ -3&-2&14 \\ 5&-1&-6\end{array}\right]

Final answer:

Inverse of matrix is

\frac{1}{13}\left[ \begin{array} {ccc}1&5&-9 \\ -3&-2&14 \\ 5&-1&-6\end{array}\right]

Hope it helps you.

To learn more on brainly:

1) a b c

-a b c

-a -b c

Evaluate

https://brainly.in/question/45411872

2) If A =( 8 −4 1 10 0 6 8 1 6 ), find A-1. Hence solve the following system of equations: 8x – 4y + z = 5; 10x + 6z =4; 8x...

https://brainly.in/question/43955097

Answered by TrustedAnswerer19
127

[ Note: Kindly see this answer from brainly app. Cause, some latex may be not visible in website. ]

 \boxed{ \begin{array}{cc} \bf \:  \to \: let: \\   \\ A=\left[ \begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&1\end{array}\right] \\  \\  \sf \:  we \: have \: to \: find :   \:  \sf \:  inverse  \: of  \: matrix \: ( {A}^{ - 1})  \\   \\ \red{ \underline{ \bf \: Solution}} \\  \\ \sf \: we \: know \: that :   \\  \\  \sf \: Inverse  \: of \:  a \:  matrix  \: exists \\  \sf \: if  \: the  \: matrix \:  is \:  non \: singular. \\  \sf \: that \: is \: mean \: its \: diterminant\:\:|A|\: \neq \: 0 \\  \\  \bf \: now \\  \\ |A|=\left|\begin{array} {ccc}2&3&4 \\ 4&3&1  \\ 1&2&1\end{array}\right| \\  \\   =2(3-2)-3(4-1)+4(8-3) \\  \\ =2 \times 1-3 \times 3+4 \times 5 \\  \\ =2-9+20 \\  \\ =13\\  \\ \therefore \:  |A| \neq \: 0 \\  \\  \bf \: so \: inverse  \: of \: the \:  matrix \:   \: is \: exist \:  \\  \\  \\  \bf \: we \: know \: that \\  \\  \pink{ \boxed{{A}^{ -1 }   =  \frac{1}{ |A| } \times Adj(A)  }}\\  \\   \end{array}}

Now we have to find Adj(A)

→ To find Adjoint of matrix A, we have to find co - factors.

 \boxed{ \begin{array}{cc}\bf \: We  \: know, \:  \\  \\  \sf \: \boxed{ \bf \: { c_{ij}  \: =  \:  {( - 1)}^{i \:  +  \: j} \: m_{ij} \: }} \\  \\  \sf \: Now, \\  \\ \rm \:c_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf 3 &\sf 1  \\ \sf 2&\sf  1\\\end{array} = ( 3 - 2) =  1 \\  \\ \rm \:c_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf 4 &\sf 1  \\ \sf 1 &\sf  1 \\\end{array} =  - ( 4 - 1) =  - 3\rm  \\  \\ \:c_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf 4 &\sf 3  \\ \sf 1 &\sf 2\\\end{array} =  (8 - 3) =5 \\  \\ \rm\:c_{21} =  {( - 1)}^{2 + 1}\begin{array}{|cc|}\sf 3 &\sf  4\\ \sf 2 &\sf  1\\\end{array} = - ( 3 - 8) = 5  \\  \\ \rm \: c_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 2&\sf  4  \\ \sf 1&\sf 1 \\\end{array} = ( 2 - 4) =  - 2 \\  \\ \rm \:c_{23} =  {( - 1)}^{2 + 3}\begin{array}{|cc|}\sf 2&\sf 3  \\ \sf 1 &\sf 2\\\end{array} = -  (4 - 3) = - 1 \\  \\ \rm\:c_{31} =  {( - 1)}^{3 + 1}\begin{array}{|cc|}\sf 3&\sf  4  \\ \sf3 &\sf 1 \\\end{array} =(3  - 12) = - 9 \\  \\ \rm \:c_{32} =  {( - 1)}^{3 + 2}\begin{array}{|cc|}\sf 2 &\sf  4\\ \sf 4 &\sf 1 \\\end{array} = - (2 - 16) = 14 \\  \\ \rm \:c_{33} =  {( - 1)}^{3 + 3}\begin{array}{|cc|}\sf 2&\sf   3  \\ \sf4 &\sf 3\\\end{array} =(6 - 12) = - 6 \\  \\  \bf \: So,  \\  \\  \rm \: \longmapsto\:adj(A) = \begin{gathered}\sf\left[\begin{array}{ccc} - 1& - 3&5\\ 5& - 2& - 1\\  - 9& 14&  - 6\end{array}\right]\end{gathered} ' \\  \\ \rm \: \longmapsto\:adj(A )= \begin{gathered}\sf\left[\begin{array}{ccc} 1& 5& - 9\\  - 3& - 2&  14\\5& - 1&  - 6\end{array}\right]\end{gathered} \end{array}}

{\boxed{\boxed{\begin{array}{cc}\bf \: now \\  \\   {A}^{ - 1}  =  \frac{1}{ |A| }  \times Adj(A) \\  \\  =  \frac{1}{13}\sf\left[\begin{array}{ccc} 1& 5& - 9\\  - 3& - 2&  14\\5& - 1&  - 6\end{array}\right] \end{array}}}}

Similar questions