Math, asked by Anonymous, 1 month ago

Find the inverse of the matrix ( if exists ) and state the reason if it doesn't exists.

\left[ \begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&4\end{array}\right]






​​

Answers

Answered by hukam0685
3

Step-by-step explanation:

Given:\left[ \begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&4\end{array}\right]

To find: Inverse of matrix (if exists)

Solution:Inverse of a matrix exists if given matrix is non-singular.

Step 1: Find the determinant of given matrix

|A|=\left|\begin{array} {ccc}2&3&4 \\ 4&3&1 \\ 1&2&4\end{array}\right|

|A|=2(12-2)-3(16-1)+4(8-3)

|A|=2×10-3×15+4×5

|A|=20-45+20

|A|=-5

|A|≠0

Thus,

Inverse of matrix exist.

Step 2: Write matrix of Minors and co-factor matrix

M=\left[ \begin{array} {ccc}10&15&5 \\ 4&4&1 \\ -9&-14&-6\end{array}\right]

C=\left[ \begin{array} {ccc}10&-15&5 \\ -4&4&-1 \\ -9&14&-6\end{array}\right]

Step 3:Write adjoint matrix by writing transpose of C.

A_{adj}=\left[ \begin{array} {ccc}10&-4&-9 \\ -15&4&14 \\ 5&-1&-6\end{array}\right]

Step 4: Write inverse of A

A^{-1}=\frac{1}{|A|}A_{adj}

A^{-1}=\frac{-1}{5}\left[ \begin{array} {ccc}10&-4&-9 \\ -15&4&14 \\ 5&-1&-6\end{array}\right]

Final answer:

Inverse of matrix is

\frac{-1}{5}\left[ \begin{array} {ccc}10&-4&-9 \\ -15&4&14 \\ 5&-1&-6\end{array}\right]

Hope it helps you.

To learn more on brainly:

1) a b c

-a b c

-a -b c

Evaluate

https://brainly.in/question/45411872

2) If A =( 8 −4 1 10 0 6 8 1 6 ), find A-1. Hence solve the following system of equations: 8x – 4y + z = 5; 10x + 6z =4; 8x...

https://brainly.in/question/43955097

Similar questions