Math, asked by prachiparichitapani, 1 month ago

Find the inverse of the matrix using row column operation of the matrix 4 -2
3 1 ​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given .matrix is

\rm :\longmapsto\:\bigg[ \begin{matrix}4& - 2 \\ 3&1 \end{matrix} \bigg]

Let assume that

\rm :\longmapsto\:A = \bigg[ \begin{matrix}4& - 2 \\ 3&1 \end{matrix} \bigg]

Using Elementary Row Transformation Method, we have

\rm :\longmapsto\:A = IA

\rm :\longmapsto\:\bigg[ \begin{matrix}4& - 2 \\ 3&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]A

 \red{\rm :\longmapsto\:OP \: R_1 \: \to  \: R_1 - R_2}

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 3 \\ 3&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& - 1 \\ 0&1 \end{matrix} \bigg]A

 \red{\rm :\longmapsto\:OP \: R_2 \: \to  \: R_2 -3 R_1}

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 3 \\ 0&10 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& - 1 \\  - 3&4 \end{matrix} \bigg]A

 \red{\rm :\longmapsto\:OP \: R_2 \: \to  \: \dfrac{1}{10}  \: R_2 }

\rm :\longmapsto\:\bigg[ \begin{matrix}1& - 3 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}1& - 1 \\  -  \dfrac{3}{10} & \dfrac{2}{5}  \end{matrix} \bigg]A

 \red{\rm :\longmapsto\:OP \: R_1 \: \to  \: R_1 + 3R_2}

\rm :\longmapsto\:\bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix} \dfrac{1}{10} & \dfrac{1}{5}  \\  -  \dfrac{3}{10} & \dfrac{2}{5}  \end{matrix} \bigg]A

\rm :\longmapsto\:\bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg] = \dfrac{1}{10}\bigg[ \begin{matrix}1&2 \\  - 3&4 \end{matrix} \bigg] A

We know,

 \boxed{ \bf{ {AA}^{ - 1}  =  {A}^{ - 1}A = I }}

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \quad \bf{ {A}^{ - 1} = \dfrac{1}{10}\bigg[ \begin{matrix}1&2 \\  - 3&4 \end{matrix} \bigg] \quad}}

Additional Information :-

 \boxed{ \bf{A \: (adjA) =  \: (adjA) \: A =  |A| I}}

 \boxed{ \bf{ |adjA|  =  { |A| }^{n - 1} }}

 \boxed{ \bf{ |A(adjA)|  =  { |A| }^{n} }}

 \boxed{ \bf{ |kA|  \:  =  \:  {k}^{n} |A| }}

 \boxed{ \bf{ | {A}^{ - 1} |  \:  =  \:  \frac{1}{ |A| } }}

Similar questions