Math, asked by Anonymous, 2 days ago

find the inverse

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​

Attachments:

Answers

Answered by TrustedAnswerer19
21

[ Note: Kindly see this answer from brainly app. Cause, some latex may be not visible in website. ]

\boxed{ \begin{array}{cc} \bf \:  \to \: given: \\   \\ A=\left[ \begin{array} {ccc}1&3&2\\ 6& - 8&5 \\ 9&7& - 4\end{array}\right] \\   \\ \\  \pink{ \sf \:  we \: have \: to \: find : } \\  \\   \:  \sf \:  inverse  \: of \: the \:   \: matrix \:  = ( {A}^{ - 1})  \\   \\ \red{ \underline{ \bf \: Solution}} \\  \\ \sf \: we \: know \: that :   \\  \\  \sf \: Inverse  \: of \:  a \:  matrix  \: exists \\  \sf \: if  \: the  \: matrix \:  is \:  non \: singular. \\  \sf \: that \: is \: mean \: its \: diterminant\:\:|A|\: \neq \: 0 \\  \\  \bf \: now \\  \\ |A|=\left|\begin{array} {ccc}1&3&2\\ 6& - 8&5  \\ 9& 7& - 4\end{array}\right| \\  \\ =  \small{1 \{( - 8) \times ( - 4) - 7 \times 5 \}  - 3 \{6 \times ( - 4) - 9 \times 5 \} + 2 \{ 6  \times 7 - 9 \times ( - 8)\}}\\  \\     =1(32-35)-3( - 24-45)+2(42 + 72) \\  \\ =1 \times( - 3)  +  3 \times 69 + \times 2 \times 114 \\  \\ = - 3 + 207 + 228\\  \\ =432\\  \\ \therefore \:  |A| \neq \: 0 \\  \\  \bf \: so \: inverse  \: of \: the \:  matrix \:   \: is \: exist \:  \\  \\  \\  \bf \: we \: know \: that \\  \\  \pink{ \boxed{{A}^{ -1 }   =  \frac{1}{ |A| } \times Adj(A)  }}\\  \\   \end{array}}

Now we have to find Adj(A)

→ To find Adjoint of matrix A, we have to find co - factors.

\boxed{ \begin{array}{cc}\bf \: We  \: know \: that, \:  \\  \\  \sf \:  \red{\boxed{ \orange{ \bf \: { c_{ij}  \: =  \:  {( - 1)}^{i \:  +  \: j} \: m_{ij} \: }}}} \\  \\  \sf \: Now, \\  \\ \rm \:c_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf  - 8 &\sf 5\\ \sf 7&\sf  - 4\\\end{array} = ( 32 - 35) =  - 3\\  \\ \rm \:c_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf 6 &\sf 5 \\ \sf 9&\sf  - 4 \\\end{array} =  - ( - 2 4   - 45) =  69\rm  \\  \\ \:c_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf 6 &\sf  - 8  \\ \sf 9 &\sf 7\\\end{array} =  (42 + 72) =114 \\   \end{array}}

\boxed{ \begin{array}{cc}\rm\:c_{21} =  {( - 1)}^{2 + 1}\begin{array}{|cc|}\sf 3 &\sf  2\\ \sf 7&\sf   - 4\\\end{array} = - (  - 12  - 14) = 26 \\  \\ \rm \: c_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 1&\sf  2  \\ \sf 9&\sf  - 4 \\\end{array} = (  - 4 - 18) =  - 22 \\  \\ \rm \:c_{23} =  {( - 1)}^{2 + 3}\begin{array}{|cc|}\sf 1&\sf 3  \\ \sf 9 &\sf 7\\\end{array} = -  (7 - 27) = 20 \\  \end{array}}

\boxed{ \begin{array}{cc} \rm\:c_{31} =  {( - 1)}^{3 + 1}\begin{array}{|cc|}\sf 3&\sf 2 \\ \sf - 8 &\sf 5 \\\end{array} =(15 + 16  ) = 31 \\  \\ \rm \:c_{32} =  {( - 1)}^{3 + 2}\begin{array}{|cc|}\sf 1 &\sf  2\\ \sf 6 &\sf 5 \\\end{array} = - (5 - 12) = 7 \\  \\ \rm \:c_{33} =  {( - 1)}^{3 + 3}\begin{array}{|cc|}\sf 1&\sf   3  \\ \sf 6 &\sf  - 8\\\end{array} =( - 8 - 18) = - 26 \\  \end{array}}

\boxed{ \begin{array}{cc} \bf \: So,  \rm \:\:adj(A) = \begin{gathered}\sf\left[\begin{array}{ccc} c_{11} & c_{12}&c_{13}\\ c_{21}& c_{22}& c_{23}\\  c_{31}&c_{32}&  c_{33}\end{array}\right]\end{gathered} ' \\  \\  \rm \:  \implies\:adj(A) = \begin{gathered}\sf\left[\begin{array}{ccc} - 3& 69&114\\ 26& - 22 &20 \\  31& 7&  - 26\end{array}\right]\end{gathered} ' \\  \\ \rm \: \implies\:adj(A )= \begin{gathered}\sf\left[\begin{array}{ccc}  - 3& 26& 31 \\  69& - 22& 7\\114& 20&  -2 6\end{array}\right]\end{gathered} \end{array}}

{\boxed{\boxed{\begin{array}{cc}\bf \: now \\  \\   {A}^{ - 1}  =  \frac{1}{ |A| }  \times Adj(A) \\  \\  =  \frac{1}{432}\begin{gathered}\sf\left[\begin{array}{ccc}  - 3& 26& 31 \\  69& - 22& 7\\114& 20&  -2 6\end{array}\right]\end{gathered} \end{array}}}}

Similar questions