Math, asked by rakeshkumar8866, 13 hours ago

Find the joint equation of pair of lines passing through the origin having slopes 2 and -2

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\textsf{Slopes of the given lines are 2 and -2}

\underline{\textbf{To find:}}

\textsf{Joint equation of pair of lines passing through origin}

\textsf{having slopes 2 and -2}

\underline{\textbf{Solution:}}

\textbf{Formula used:}

\textsf{The equation of straight line passing through origin}

\textsf{and having slope m is}\;\;\boxed{\textbf{y=mx}}

\mathsf{Here,}

\mathsf{Slopes:\;m_1=2\;\&\;m_2=-2}

\textsf{Equation of the lines are}

\mathsf{y=m_1\,x\;\;\&\;\;y=m_2\,x}

\mathsf{y=2\,x\;\;\&\;\;y=-2\,x}

\mathsf{2\,x-y=0\;\;\&\;\;2\,x+y=0}

\therefore\textsf{Their joint equation is}

\mathsf{(2x-y)(2x+y)=0}

\mathsf{(2x)^2-y^2=0}

\implies\boxed{\mathsf{4x^2-y^2=0}}

\underline{\textbf{Find more:}}

The angle between the lines ,2x+3y=5 and 3x-2y=7  

https://brainly.in/question/5721516#

Similar questions