find the L.C.M of the polynomial 12(x⁴-x³) and 8(x⁴-3x³+2x²)
Answers
Answered by
1
L.C.M of p(x), q(x) = x³ (x - 1) (x - 2)
Solution :
Given Polynomial
→ p(x) = 12 (x⁴- x³)
→ q(x) = (x⁴ - 3x³ + 2x²)
p(x) = 12(x⁴) (x³)
= 3 × 2 × 2 × x³ (x - 1)
q(x) = 12(x⁴ - 3x³ × 2x²)
⇒ x² (x² - 3x + 2)
⇒ x² (x² - x - 2x + 12)
⇒ x² (x - 1) (x - 2)
∴ L.C.M of p(x), q(x) = x³ (x - 1) (x - 2).
⇒ x² - 3x + 2 • a = 1, • b = 3, • c = 2.
⇒ a × b = 1 × 2 = 2.
⇒ x² - x - 2x + 2
⇒ (x - 1) = 2 (x - 1)
⇒ (x - 1) (x - 2).
Hope It'll Helps!
Similar questions