Math, asked by philomenags06, 10 months ago

Find the Laplace of t cos 4t​

Answers

Answered by Akashrajpal9
1

Answer:

Let,

I

=

cos

4

t

sin

2

t

d

t

.

Observe that,

cos

and

sin

both have even Power. So, we have

to convert them into Multiple Angles, using the Identities,

(

1

)

:

cos

2

θ

=

1

+

cos

2

θ

2

,

(

2

)

:

sin

2

θ

=

1

cos

2

θ

2

,

(

3

)

:

2

cos

α

cos

β

=

cos

(

α

+

β

)

+

cos

(

α

β

)

.

Now,

cos

4

t

sin

2

t

=

1

4

(

4

cos

2

t

sin

2

t

)

(

cos

2

t

)

,

=

1

4

(

sin

2

(

2

t

)

)

(

cos

2

t

)

,

=

1

4

{

1

2

(

1

cos

4

t

)

}

{

1

2

(

1

+

cos

2

t

)

}

,

=

1

16

(

1

cos

4

t

+

cos

2

t

cos

4

t

cos

2

t

)

,

=

1

32

{

2

2

cos

4

t

+

2

cos

2

t

2

cos

4

t

cos

2

t

}

,

=

1

32

{

2

2

cos

4

t

+

2

cos

2

t

(

cos

6

t

+

cos

2

t

)

}

,

=

1

32

{

2

cos

6

t

2

cos

4

t

+

3

cos

2

t

}

.

Therefore,

I

=

1

32

{

2

cos

6

t

2

cos

4

t

+

3

cos

2

t

}

d

t

,

=

1

32

(

2

t

1

6

sin

6

t

2

1

4

sin

4

t

+

3

1

2

sin

2

t

)

,

I

=

1

192

(

12

t

sin

6

t

3

sin

4

t

+

9

sin

2

t

)

+

C

.

Enjoy Maths.!

Answered by liton320051
0

Answer:

Find the Laplace transform of t cos 4t

Similar questions