find the laplace tranform of S(A)
Answers
Answered by
1
Step-by-step explanation:
L{sinat}(s) = ∫→+∞0e−stsinatdt Definition of Laplace Transform
= limL→∞∫L0e−stsinatdt Definition of Improper Integral
= limL→∞[e−st(−ssinat−acosat)(−s)2+a2]L0 Primitive of eaxsinbx
= limL→∞(e−sL(−ssinaL−acosaL)s2+a2−e−s×0(−ssin(0×a)−acos(0×a))s2+a2)
= limL→∞(ssin0+acos0s2+a2−e−sL(ssinaL+acosaL)s2+a2) Exponential of Zero and rearranging
= ssin0+acos0s2+a2−0 Exponential Tends to Zero
= as2+a2 Sine of Zero is Zero, Cosine of Zero is One
■
Similar questions