Math, asked by velusubi1245, 4 months ago

Find the Laplace transform of t^2 e^-3t sin 2t.​

Answers

Answered by rubamanikandan
5

Answer:

please mark me the brainiest

Step-by-step explanation:

Attachments:
Answered by brokendreams
2

Laplace transform of t^2 e^{-3t} sin 2t is \dfrac{4(3s^{2} + 18s + 23)}{(s^{2} + 6s + 13)^3}

Step-by-step explanation:

Given: f (x) = t^2 e^{-3t} sin 2t

To Find: Laplace transformation of f(x)

Solution:

  • Laplace transform of f(x) = t^2 e^{-3t} sin 2t

The Laplace transform of f(x) = t^2 e^{-3t} sin 2t can be determined by,

\Rightarrow L[sin2t] = \dfrac{2}{s^{2} + 4 } \ \ \ \ \because L[sinat] = \dfrac{a}{s^{2} + a^{2}  }

\Rightarrow L[e^{-3t} sin2t] = \dfrac{2}{(s+3)^{2} + 4 } \ \ \ \ \because L[e^{at} f(t)] = F(s-a)

\Rightarrow L[t^{2} e^{-3t} sin2t] = \dfrac{d^2}{ds^2} \Big( \dfrac{2}{(s+3)^{2} + 4 } \Big) \ \ \ \ \because L[t^{n} f(t)] = (-1)^n \dfrac{d^n  [f(n)]}{ds^n}

\Rightarrow L[t^{2} e^{-3t} sin2t] = \dfrac{d}{ds} \Big(  \dfrac{d}{ds} \Big( \dfrac{2}{(s+3)^{2} + 4 } \Big) \Big)

\Rightarrow L[t^{2} e^{-3t} sin2t] = \dfrac{d}{ds} \Big(  \dfrac{-4(s+3)}{((s+3)^{2} + 4)^2 } \Big)

\Rightarrow L[t^{2} e^{-3t} sin2t] = \Big(  \dfrac{-4(3s^2+18s+23)}{(s^{2} + 6s +13)^3 } \Big)

Hence, the Laplace transform of t^2 e^{-3t} sin 2t is \dfrac{4(3s^{2} + 18s + 23)}{(s^{2} + 6s + 13)^3}

Similar questions