Math, asked by akshaykulakarni12022, 6 months ago

find the Laplace transformation of cos^3(2t​

Answers

Answered by tarracharan
0

Let \bold{f(t)=cos³(2t)}

Using the identity \boxed{\bold{cos²(x)=\dfrac{1+cos(2x)}{2}}} ,

it follows that \bold{cos³(x)=\dfrac{1+cos(2x)}{2}⋅cos(x)}.

In our case, the x=2t , so we can re-write our function as:

\bold{f(t)=\dfrac{1+cos(4t)}{2}⋅cos(2t)}

\bold{f(t)=\dfrac{cos(2t)}{2}+\dfrac{cos(4t)cos(2t)}{2} }

Now, using the identity: \bold{cos(a)⋅cos(b)=\dfrac{1}{2}(cos(a−b)+cos(a+b)) }

where a=4t and b=2t , we obtain:

\bold{\dfrac{1}{2}cos(4t)⋅cos(2t) =\dfrac{1}{4}(cos(2t)+cos(6t))}

\bold{=\dfrac{cos(2t)}{4}+\dfrac{cos(6t)}{4} }

So, to sum it up, our function is now:

\bold{f(t)=\dfrac{cos(2t)}{2}+\dfrac{cos(2t)}{4}+\dfrac{cos(6t)}{4}}

\bold{f(t)=\dfrac{3}{4}cos(2t)+\dfrac{1}{4}cos(6t) }

Similar questions