Math, asked by devkumarsingh924, 1 year ago

Find the Laplace transtorm of the
following function (1) f(t) = 6sin2t - 5 cosat (2)f(t)= t cos at
f(t) = 6 \sin(2t)  - 5cos2t
f(t) = t \cos(at)

Answers

Answered by lublana
4

Answer:

1.L(f(t))=\frac{12-5s}{s^2+4}

2.L(tcos at)=\frac{s^2-9}{(s^2+9)^2}

Step-by-step explanation:

We are given that

a.f(t)=6 sin 2t-5 cos 2t

We have to find the laplace transform of given function

We know that L(sinat)=\frac{a}{s^2+a^2}

L(cosat)=\frac{s}{s^2+a^2}

L(tcosat)=\frac{s^2-a^2}{(s^2+a^2)^2}

Using the identities

1.F(s)=6\cdot \frac{2}{s^2+4}-5\cdot \frac{s}{s^2+4}=\frac{12}{s^2+4}-\frac{5s}{s^2+4}

F(s)=\frac{12-5s}{s^2+4}

2.f(t)=t cosat

Using the identity

L(tcos at)=\frac{s^2-9}{(s^2+9)^2}

Similar questions