find the largest number which divides 320 and 457 and leaves remainder 6
Answers
Hey mate,
To find the largest number which when divides 320 and 457 leaving the remainders 6 respectively. First we subtract the remainders from the given numbers and then calculate the HCF of New numbers.
Given numbers are 320 & 457 and remainders are 6.Then new numbers after Subtracting remainders are :(320 - 6) = 314 and (457- 6)= 451
We have to find the HCF of 314and 451 by using Euclid's division Lemma, a= bq+r
Here, 451>314
451= 314 x 1 + 137
314= 137 x 2 +40
137= 40 x 3 + 17
40=17×2+6
17=6×2+5
6=5×1+1
5=1×5+0
Therefore HCF of 451 & 314 is 5.
Hope it will help you
⭕️NO. LEAVING REMAINDER 6=314
⭕️NO.LEAVING REMAINDER 6=451
HCF(314,451)=
HCF(314,451)=451=314*1+137
HCF(314,451)=451=314*1+137314=137*2+40
HCF(314,451)=451=314*1+137314=137*2+40137=40*4+17
HCF(314,451)=451=314*1+137314=137*2+40137=40*4+1740=17*2+6
HCF(314,451)=451=314*1+137314=137*2+40137=40*4+1740=17*2+617=6*2+5
HCF(314,451)=451=314*1+137314=137*2+40137=40*4+1740=17*2+617=6*2+56=5*1+1
HCF(314,451)=451=314*1+137314=137*2+40137=40*4+1740=17*2+617=6*2+56=5*1+15=1*5+0
♣️♣️♣️♣️♣️