find the last two digits of 3^2012 when represented in decimal notation
Answers
Answered by
33
[tex]3^{2012} = 9^{1006}=(10-1)^{1006} \\ \\
By\: using\: binomial\: expansion \\ \\
10^{1006}-1006\times10^{1005}+.........+505515\times 10^{2}-1006\times 10+1 \\ \\
=10^{1006}-1006\times10^{1005}+.........+505515\times 10^{2}-10060+1 \\ \\
When\: this\: is\: divided\: by\:100\:\:we\: will\: get\: a\: remainder\:41 \\ \\
So\:\: last\: two\:digits\: of\:the\: expansion\:will\:be\:\:41[/tex]
sivaprasad2000:
Pls mark as the brainliest
Similar questions