Math, asked by sharmakeshab401, 10 months ago

find the lateral surface area and area of circular base of a cylindrical glass of height 12cm and diameter 7 cm

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Height of cylinder = 12 cm}

\textsf{Diameter of cylinder =7 cm}

\textbf{To find:}

\textsf{Lateral surface area and base area of the cylinder}

\textbf{Solution:}

\textsf{Radius of the cylinder}\mathsf{=\dfrac{7}{2}\;cm}

\textsf{Lateral surface area of the cylinder}

\mathsf{=2\;\pi\,r\,h}

\mathsf{=2{\times}\dfrac{22}{7}{\times}\dfrac{7}{2}{\times}12}

\mathsf{=22{\times}12}

\mathsf{=264\;cm^2}

\textsf{Base area of the cylinder}

\mathsf{=\pi\,r^2}

\mathsf{=\dfrac{22}{7}{\times}\dfrac{7}{2}{\times}\dfrac{7}{2}}

\mathsf{=11{\times}\dfrac{7}{2}}

\mathsf{=\dfrac{77}{2}}

\mathsf{=38.5\;cm^2}

Answered by Anonymous
5

\textbf{Given:}

\textsf{Height of cylinder = 12 cm}

\textsf{Diameter of cylinder =7 cm}

\textbf{To find:}

\textsf{Lateral surface area and base area of the cylinder}

\textbf{Solution:}

\textsf{Radius of the cylinder}\mathsf{=\dfrac{7}{2}\;cm}

\textsf{Lateral surface area of the cylinder}

\mathsf{=2\;\pi\,r\,h}

\mathsf{=2{\times}\dfrac{22}{7}{\times}\dfrac{7}{2}{\times}12}

\mathsf{=22{\times}12}

\mathsf{=264\;cm^2}

\textsf{Base area of the cylinder}

\mathsf{=\pi\,r^2}

\mathsf{=\dfrac{22}{7}{\times}\dfrac{7}{2}{\times}\dfrac{7}{2}}

\mathsf{=11{\times}\dfrac{7}{2}}

\mathsf{=\dfrac{77}{2}}

\mathsf{=38.5\;cm^2}

Similar questions