Math, asked by sachinmaloth, 1 month ago

find the lateral surface area and total surface area of cuboid dimensions are 26 m,14m , 6.5 m ?​

Answers

Answered by Anonymous
19

{\large{\pmb{\sf{\underline{RequirEd \; Solution...}}}}}

{\bigstar \:{\pmb{\sf{\underline{Given \: that...}}}}}

A cuboid is given.

Dimensions of the cuboid are 26 metres, 14 metres, 6.5 metres respectively. Henceforth,

  • Length = 26 metres
  • Breadth = 14 metres
  • Height = 6.5 metres

{\bigstar \:{\pmb{\sf{\underline{To \: find...}}}}}

Lateral surface area of this cuboid

Total surface area of this cuboid

{\bigstar \:{\pmb{\sf{\underline{Solution...}}}}}

Lateral surface area of this cuboid = 520 metres sq.

Total surface area of this cuboid = 1248 metres sq.

{\bigstar \:{\pmb{\sf{\underline{Using \: concepts...}}}}}

Formula to find out LSA of a cuboid.

Formula to find out TSA of a cuboid

{\bigstar \:{\pmb{\sf{\underline{Using \: formulas...}}}}}

{\small{\underline{\boxed{\sf{\star \: LSA \: of \: cuboid \: = 2h(l+b)}}}}}

{\small{\underline{\boxed{\sf{\star \: TSA \: of \: cuboid \: = 2(l \times b + b \times h + l \times h)}}}}}

  • (Where, LSA denotes lateral surface area, l denotes length, b denotes breadth, h denotes height, TSA denotes total surface area)

{\bigstar \:{\pmb{\sf{\underline{Full \; Solution...}}}}}

~ Firstly let us find TSA of cuboid.

{\small{\underline{\boxed{\sf{:\implies TSA \: of \: cuboid \: = 2(l \times b + b \times h + l \times h)}}}}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(l \times b + b \times h + l \times h)}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(26 \times 14 + 14 \times 6.5 + 26 \times 6.5)}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(364 + 14 \times 6.5 + 26 \times 6.5)}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(364 + 91 + 26 \times 6.5)}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(364 + 91 + 169)}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(455 + 169}}

{\sf{:\implies TSA \: of \: cuboid \: = 2(624)}}

{\sf{:\implies TSA \: of \: cuboid \: = 2 \times 624}}

{\sf{:\implies TSA \: of \: cuboid \: = 1248 \: m^{2}}}

{\pmb{\sf{\underline{\therefore \: TSA \: of \: cuboid \: = 1248 \: m^{2}}}}}

~ Now let us find LSA of cuboid.

{\small{\underline{\boxed{\sf{:\implies LSA \: of \: cuboid \: = 2h(l+b)}}}}}

{\sf{:\implies LSA \: of \: cuboid \: = 2h(l+b)}}

{\sf{:\implies LSA \: of \: cuboid \: = 2(6.5) (26+14)}}

{\sf{:\implies LSA \: of \: cuboid \: = 2 \times 6.5 (26+14)}}

{\sf{:\implies LSA \: of \: cuboid \: = 13.0 (26+14)}}

{\sf{:\implies LSA \: of \: cuboid \: = 13.0 (40)}}

{\sf{:\implies LSA \: of \: cuboid \: = 13.0 \times 40}}

{\sf{:\implies LSA \: of \: cuboid \: = 520 \: m^{2}}}

{\pmb{\sf{\underline{\therefore \: LSA \: of \: cuboid \: = 520 \: m^{2}}}}}

{\large{\pmb{\sf{\underline{Some \: Formulas...}}}}}

\; \; \; \; \; \; \;{\sf{\leadsto TSA \: of \: cuboid \: = \: 2(l \times b + b \times h + l \times h)}}

\; \; \; \; \; \; \;{\sf{\leadsto LSA \: of \: cuboid \: = \: 2h(l+b)}}

\; \; \; \; \; \; \;{\sf{\leadsto Volume \: of \: cuboid \: = \: L \times B \times H}}

\; \; \; \; \; \; \;{\sf{\leadsto Diagonal \: of \: cuboid \: = \: \sqrt{3l}}}

\; \; \; \; \; \; \;{\sf{\leadsto Perimeter \: of \: cuboid \: = \: 12 \times Sides}}

{\large{\pmb{\sf{\underline{StrucTure \: of \: cuboid...}}}}}

\setlength{\unitlength}{0.74 cm}\begin{picture}\thicklines\put(5.6,5.4){\bf A}\put(11.1,5.4){\bf B}\put(11.2,9){\bf C}\put(5.3,8.6){\bf D}\put(3.3,10.2){\bf E}\put(3.3,7){\bf F}\put(9.25,10.35){\bf H}\put(9.35,7.35){\bf G}\put(3.5,6.1){\sf x\:cm}\put(7.7,6.3){\sf y\:cm}\put(11.3,7.45){\sf z\:cm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

Answered by Anonymous
14

{ \pink{ \underline{ \sf{ \maltese{ \pmb{ \: Given : }}}}}}

➱ Dimensions of the cubiod

  • ★ Lenght = 26m
  • ★ Breadth = 14m
  • ★ Hieght = 6.5m

{ \pink{ \underline{ \sf{ \maltese{ \pmb{ \: To \:  Find : }}}}}}

  • The Lateral surface area of the cubiod
  • The Total surface area of the cubiod

{ \pink{ \underline{ \sf{ \maltese{ \pmb{ \: Solution: }}}}}}

We know that,

{ \blue{ \star \: { \underline{ \boxed{ \sf{ \pink{T.S.A _{(cuboid)} = 2(lb + bh + hl)}}}}}}}

Here,

  • Length = 26m
  • Breath = 14m
  • Hieght = 6.5m

Substituting the values,

{ : \implies} \rm \: T.S.A = 2(l  b  +  hl + bh)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \rm \: T.S.A = 2(26 \times 14 + 6.5 \times 26 + 14 \times 6.5) \\  \\  \\ { : \implies} \rm \: T.S.A = 2(364 + 169 + 91) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: T.S.A = 2(624) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: T.S.A ={ \boxed{ \pmb{ \frak{ 1248 {cm}^{2} }}} \bigstar} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the total surface area is 1248cm²

~ Now, let's find the Lateral surface area

We know that,

{ \blue{ \star \: { \underline{ \boxed{ \sf{ \pink{L.S.A _{(cuboid)} = 2h(l + b)}}}}}}}

Here,

  • Length = 26m
  • Breath = 14m
  • Hieght = 6.5m

Substituting we get,

{ : \implies} \rm \: L.S.A = 2h(l + b) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: L.S.A = 2 \times 6.5(26 + 14) \\  \\  \\{ : \implies} \rm \: L.S.A = 13 \times 40 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: L.S.A = { \boxed{ \pmb{ \frak{520 {m}^{2} }}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the lateral surface area is 520m²

Similar questions