Math, asked by Nayanav, 6 months ago

Find the lateral surface ate of two pillars if height of the pillar is 7m and radius of the base is 1.4m.

Answers

Answered by sethrollins13
88

Given :

  • Height of Pillar is 7 m .
  • Radius of Pillar is 1.4 m.

To Find :

  • Lateral Surface Area of Two Pillars .

Solution :

Firstly we will find Lateral Surface Area of 1 pillar :

\longmapsto\tt{Radius(r)=1.4\:m}

\longmapsto\tt{Height(h)=7\:m}

Using Formula :

\longmapsto\tt\boxed{L.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{{\not{7}}}\times{1.4}\times{{\not{7}}}}

\longmapsto\tt{2\times{22}\times{1.4}}

\longmapsto\tt{44\times{1.4}}

\longmapsto\tt\bf{61.6\:{m}^{2}}

Now ,

Lateral Surface Area of 2 pillars :

\longmapsto\tt{61.2\times{2}}

\longmapsto\tt\bf{123.2\:{m}^{2}}

So , The Lateral Surface Area of Two Pillars is 123.2 m² .

_______________________

  • L.S.A / C.S.A of Cylinder = 2πrh
  • T.S.A of Cylinder = 2πr(r+h)
  • Volume of Cylinder = πr²h

Here :

  • π = 22/7 or 3.14
  • r = Radius
  • h = Height

_______________________

Answered by itzcutiemisty
75

Answer:

123.2 m²

Step-by-step explanation:

\text{\large\underline{\green{Given:}}}

  • Height of pillar (h) = 7 m
  • Radius of bas (r) = 1.4 m

\text{\large\underline{\purple{To\:find:}}}

  • The LSA of two pillars = ?

\text{\large\underline{\pink{Solution:}}}

We know that the height of pillar is 7 m and the radius is 1.4 m and we have to calculate the lateral surface area of two pillars.

\sf\blue{\implies \: LSA \: of pillar \: or \:cylinder \: = 2\pi rh}

Let's find the LSA of 1 pillar first !

\implies LSA = \dfrac{2\:×22\:×7\:×\:1.4}{7}

\implies LSA = \dfrac{44\:×1.4}{7}

\implies LSA = \dfrac{308}{5}

\implies LSA = 61.6 m²

Hence, the LSA for 1 pillar is 61.6 m².

LSA for 2 pillars:

\implies 61.6 × 2

\implies 123.2 m²

{\large{\boxed{\sf{\therefore \:LSA\:of\:two\:pillars\:is\:123.2\:m²}}}}

Hope it helped you dear...

Similar questions