Math, asked by keneelrathod502829, 1 year ago

Find the lateral surface of a right circular cylinder whose height is 13.5cm and radius of the base 7cm.Also fund its whole surface​

Answers

Answered by riyabajwa405
0

Answer:

C.S.A = 334.4 cm^2

T.S.A = 488.4 cm^2

Step-by-step explanation:

C.S.A = πrl

22/7 * 7 * 15.20

334.4 cm^2

T.S.A = πr(l+r)

22/7 * 7 (15.20 + 7 )

22 * 22.2

488.4 cm^2

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{C.S.A\:of\:cylinder=594\:cm}^{2}}}

\green{\therefore{\text{T.S.A\:of\:cylinder=902\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 7\: cm} \\ \\ : \implies \text{Height(h) = 13.5\: cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{C.S.A \: of \: cylinder = ? }\\ \\ : \implies \text{T.S.A\: of \: cylinder = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ : \implies \text{C.S.A\: of \: cylinder} =2\pi rh \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times \frac{ 22}{7} \times 7\times 13.5 \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times 22 \times 13.5 \\ \\ \green{ : \implies \text{C.S.A\: of \: cylinder} =594 \: {cm}^{2}} \\ \\ \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times \frac{22}{7} \times 7(13.5+ 7) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times 22 \times 20.5 \\ \\ \green{ : \implies \text{T.S.A\: of \: cylinder} =902\: {cm}^{2} }

Similar questions