Math, asked by gk3214539, 6 months ago

find the latus rectum of ellipse x2/9+ y2/16 = 1 is​

Answers

Answered by amansharma264
9

EXPLANATION.

Equation of ellipse = x²/9 + y²/16 = 1.

General equation of ellipse = x²/a² + y²/b² = 1.

(a) = Centre of an ellipse = C ( 0,0).

(b) = vertex = B ( 0,b) and B' ( 0,-b )

vertex = B ( 0,4 ) and ( 0,-4 ).

(c) Eccentricity = a² = b²( 1 - e² ).

⇒ 9 = 16 ( 1 - e² ).

⇒ 9 = 16 - 16e².

⇒ 9 - 16 = -16e².

⇒ -7 = -16e².

⇒ e² = √7/16.

⇒ e = √7/4  and -√7/4.

(c) = Focus = S ( o, be 0 and S' ( 0,-be ).

Focus = S ( 0,4 X √7/4 ) and S' ( 0, -4 X √7/4 ).

Focus = S ( 0, √7 ) and S' ( 0, -√7 ).

( D ) = Equation of directrix ⇒ y = +b/e  and  y = -b/e.

Equation of directrix ⇒ y = 4/√7/4  and  y = -4/√7/4.

Equation of directrix = y = 16/√7  and y = -16/√7.

(E) = Length of major axis = 2b = 2(4) = 8.

(F) = Length of minor axis = 2a = 2(3) = 6.

(G) = Length of latus rectum = 2a²/b = 2(3)²/4 = 18/4 = 9/2.

                                                                   

MORE INFORMATION.

Equation of ellipse in different forms.

(1) = Point form.

The equation of the tangent to the ellipse x²/a² + y²/b² = 1 at the point ( x₁ , y₁) is ⇒ xx₁/a² + yy₁/b² = 1.

(2) = Slope Form.

If the line y = mx + c touches the ellipse x²/a² + y²/b² = 1 then,

c² = a²m² + b².

Hence, the straight line y = mx ± √a²m² + b²  always represent the tangent to the ellipse.

(3) = Parametric Form.

The equation of tangent at any point ( a cos∅ , b sin∅ ) is,

x cos∅/a + y sin∅/b = 1.

Answered by Vrushalivare1572
0

Answer:

The answer is very easy -9/2

Similar questions