Find the Laurent expansion of
(7z^2 +9z-18)/z^3-9z
in the region (i) 0<|z|<3
(ii)|z|>3
Answers
Step-by-step explanation:
Let f(z) = 7 z 2 + 9 z - 18 / z 3 - 9z
Find Laurent series for the convergence regions:
a) 0 < ÷ z ÷ < 3 and
b) ÷ z ÷ > 3
We approach using partial fraction decomposition:
7z 2 + 9 z - 18 / z 3 - 9z = z (z + 9) + 18/ [z {z + 3) (z – 3) ]
= A/ z + B/ (z + 3) + C / (z – 3)
7 z 2 + 9 z - 18 = A(z + 3) (z – 3) + Bz (z – 3) + Cz (z + 3)
For z = 0: - 9A = -18 so that A = 2
For z = -3: 18B = 7(-3)2 + 9(-3) – 18 =
63 – 27 – 18 = 18 so that B = 1
For z = 3: 18 C = 7(3)2 + 9(3) – 18 = 63 + 27 – 18 = 72
So that C = 4
Then:
7 z 2 + 9 z - 18 / [z {z + 3) (z – 3) ]
= 2/ z + 1 / (z + 3) + 4/ (z -3)
Rewrite as:
2/ z + 1/3 (1 / 1 + z/3) – 4/3 (1 / 1 – z/3)
For term 1: ÷ z ÷ < 1
For term 2 : ÷ z ÷ < 3
For term 3: ÷ z ÷ < 3
Expand 2nd and 3rd terms and expand using 1 / (1 – z) and substituting:
2/ z + 1/3 (1 – z/ 3 + z 2 / 32 + …) - 4/3 (1 + z/ 3 + z 2 / 32 + …)
Combining Terms:
2/z – 1 – 5z/ 32 + 3 z 2 / 33 + …)
Which series can be represented:
2/ z + [ å¥ n = 0 (-1) n – 4 / 3 n + 1 ] z 4
For: 0 < ÷ z ÷ < 3
Now, rewrite the original partial-fraction f(z) in the form:
2/ z + 1/ z (1 / 1 + 3/z) + 4/z ( 1 / 1 – 3/z)
Expand 2nd, 3rd etc terms using 1/ 1 – z:
Þ 2/ z + 1/z (1 – 3/z + 32 / z 2 + ….) +
......+ 4/z (1 + 3/z + 32 / z 2 + …)
= 2/z + 1/z - 3/ z 2 + 32 / z 3 + +…….
+ 4/z + 12/ z 2 + 36 / z 3 + …..
= 2/z + [5/z + 9/ z 2 + 45 / z 3 + ………]
Which can be represented in the form:
2/ z + å¥ n = 0 3 n (4 + (-1) n ) / z n + 1
For: ÷ z ÷ > 3
Step-by-step explanation:
Let f(z) = 7 z 2 + 9 z - 18 / z 3 - 9z
Find Laurent series for the convergence regions:
a) 0 < ÷ z ÷ < 3 and
b) ÷ z ÷ > 3
We approach using partial fraction decomposition:
7z 2 + 9 z - 18 / z 3 - 9z = z (z + 9) + 18/ [z {z + 3) (z – 3) ]
= A/ z + B/ (z + 3) + C / (z – 3)
7 z 2 + 9 z - 18 = A(z + 3) (z – 3) + Bz (z – 3) + Cz (z + 3)
For z = 0: - 9A = -18 so that A = 2
For z = -3: 18B = 7(-3)2 + 9(-3) – 18 =
63 – 27 – 18 = 18 so that B = 1
For z = 3: 18 C = 7(3)2 + 9(3) – 18 = 63 + 27 – 18 = 72
So that C = 4
7 z 2 + 9 z - 18 / [z {z + 3) (z – 3) ]
= 2/ z + 1 / (z + 3) + 4/ (z -3)
Rewrite as: 2/ z + 1/3 (1 / 1 + z/3) – 4/3 (1 / 1 – z/3)
For term 1: ÷ z ÷ < 1
For term 2 : ÷ z ÷ < 3
For term 3: ÷ z ÷ < 3
Expand 2nd and 3rd terms and expand using 1 / (1 – z) and substituting:
2/ z + 1/3 (1 – z/ 3 + z 2 / 32 + …) - 4/3 (1 + z/ 3 + z 2 / 32 + …)
Combining Terms:
2/z – 1 – 5z/ 32 + 3 z 2 / 33 + …)
Which series can be represented:
2/ z + [ å¥ n = 0 (-1) n – 4 / 3 n + 1 ] z 4
For: 0 < ÷ z ÷ < 3
Now, rewrite the original partial-fraction f(z) in the form:
2/ z + 1/ z (1 / 1 + 3/z) + 4/z ( 1 / 1 – 3/z)
Expand 2nd, 3rd etc terms using 1/ 1 – z:
Þ 2/ z + 1/z (1 – 3/z + 32 / z 2 + ….) +
......+ 4/z (1 + 3/z + 32 / z 2 + …)
= 2/z + 1/z - 3/ z 2 + 32 / z 3 + +…….
+ 4/z + 12/ z 2 + 36 / z 3 + …..
= 2/z + [5/z + 9/ z 2 + 45 / z 3 + ………]
Which can be represented in the form:
2/ z + å¥ n = 0 3 n (4 + (-1) n ) / z n + 1
For: ÷ z ÷ > 3
Plz mark as Brainlist
...............Plz